

DS-CIMX327-22

МРЦН.СІМХ.50.102РЭ

Оглавление

1 Описание модуля электронной камеры	4
1.1 Назначение изделия	4
1.2 Основные технические характеристики	5
2 Общая информация по подключению и настройке МЭК	5
3 Габаритные размеры МЭК	8
4 Подключение МЭК к платформе СКИФ	9
4.1 Физическое подключение к платформе СКИФ	9
4.2 Программное подключение к платформе СКИФ	10
5 Подключение МЭК к платформе RockChip RK3588	13
5.1 Физическое подключение к модулю ROC-RK3588S-PC FireFly	13
5.2 Программное подключение к модулю ROC-RK3588S-PC FireFly	13
5.3 Физическое подключение к модулю NanoR	16
5.4 Программное подключение к модулю NanoR	16
6 Подключение МЭК к платформе RockChip RK3568	19
6.1 Физическое подключение к модулю DS-RK3568-EVB rev.1	19
6.2 Программное подключение к модулю DS-RK3568-EVB rev.1	19
7 Меры предосторожности	21

Настоящее руководство по эксплуатации является руководящим документом для изучения устройства, функционирования, порядка и правил использования по назначению, при техническом обслуживании и хранении модуля электронной камеры DS-CIMX327-22.

Настоящее руководство по эксплуатации может быть уточнено и дополнено в установленном порядке.

Несоблюдение указаний по эксплуатации, техническому обслуживанию и правил техники безопасности, изложенных в настоящем Руководстве, может быть причиной возникновения ситуаций, связанных с причинением вреда здоровью.

Адрес изготовителя:

Российская Федерация, 196105, г. Санкт-Петербург,

ул. Свеаборгская, д.12, пом.3Н.

Телефон/факс: +7(812) 370-60-70

Электронная почта: contract@macrogroup.ru

ИНН 7810895610 КПП 781001001 Р/с 40702810206000003697

БИК 044030920 К/с 3010181000000000920

САНКТ-ПЕТЕРБУРГСКИЙ ФИЛИАЛ ПАО "ПРОМСВЯЗЬБАНК"

ОКПО 43468759 ОКВЭД 26.30, 27.90, 46.69.9, 47.78, 47.99, 72.1, 73.20.1

1 Описание модуля электронной камеры

1.1 Назначение изделия

Модуль электронной камеры DS-CIMX327-22 (далее - МЭК) является законченным модулем, в котором используется высокочувствительный 2-мегапиксельный цветной CMOS-сенсор Sony IMX327.

МЭК рекомендован для применения в следующих областях:

- Машинное зрение;
- Робототехника;
- Full HD умные камеры;
- Видеонаблюдение, видеорегистрация;
- Интеллектуальные системы помощи водителю;
- Управление дорожным движением.

1.2 Основные технические характеристики

Характеристика	Минимум	Номинал	Максимум	Единица измерения
Напряжение питания	2,9	3,3	5,3	В
Ток потребления	-	110	150	мА
Тактовая частота МЭК	-	37,125	-	ΜΓц
Тактовая частота интерфейса I2C	0	-	400	кГц
Количество линий MIPI-CSI2	2		4	
Частота кадров в секунду (FPS)	-	-	60	
Количество пикселей		1945×1109		
Рекомендованное разрешение		1920×1080		
Диапазон усиления	-	-	69	дБ
Диагональ матрицы МЭК		6,46(1/2.8)		ММ
Размер пикселя		2,9×2,9		МКМ
Габаритные размеры (Ш×В×Г)	-	24,5×22×7	-	ММ
Цвет печатной платы		зелёная		
Вес МЭК	-	-	10	Г

Таблица 1. Основные технические характеристики:

2 Общая информация по подключению и настройке МЭК

В настоящий момент поддерживаются платформы: СКИФ от НПЦ "ЭЛВИС" (MCom-03, <u>NanoS</u>, <u>PicoS</u>), RK3588 (NanoR, FireFly ROC-RK3588S). Тестируется с платформами RK3568 (DS-RK3568) от бренда DiaSom.

Для подключения МЭК к различным вычислительным платформам используется один 22-выводный разъём J1 (рис.1), установленный на плате модуля. Назначение контактов разъёма указано в таблице 2.

Рисунок 1 – Внешний вид разъёма Ј1 на МЭК

Сигнал	Номер контакта 22-проводного разъёма J1	Номер контакта 15-проводного разъёма соединительного шлейфа на рис.4
Общий провод	22	1
Линия видеоданных 0 отрицательный провод	21	2
Линия видеоданных 0 положительный провод	20	3
Общий провод	19	4
Линия видеоданных 1 отрицательный провод	18	5
Линия видеоданных 1 положительный провод	17	6
Общий провод	16	7
Линия такта видеоданных отрицательный провод	15	8
Линия такта видеоданных положительный провод	14	9
Общий провод	13	10
Линия видеоданных 2 отрицательный провод	12	-
Линия видеоданных 2 положительный провод	11	-
Общий провод	10	-
Линия видеоданных 3 отрицательный провод	9	-
Линия видеоданных 3 положительный провод	8	-
Общий провод	7	-
Включение питания (PON)	6	11
Не используется	5	12
Общий провод	4	-
Такт интерфейса I2С (SCL)	3	13
Данные интерфейса I2C (SDA)	2	14
Питание	1	15

Таблица 2. Соответствие контактов разъёмов.

Питание МЭК включается по команде компьютера, к которому он подключен, высоким логическим уровнем (3В≤РОN≤5В) на контакте 6 разъёма J1. Когда все служебные источники питания модуля включены, зажигается зелёный светодиод LED1. Отключается питание подачей низкого логического уровня (PON<0,5В) на этот контакт.

Режим работы МЭК определяется содержимым внутренних регистров. Информация в эти регистры должна быть корректно внесена компьютером по шине I2C в зависимости от применения МЭК до запуска передачи видеоинформации. Адрес МЭК на шине I2C – 0x34 (0x1A) и он не может быть изменен.

Режим синхронизации видеосигнала МЭК установлен при изготовлении на MASTER и он не может быть изменен.

Резисторы R6 и R7 (4,7кОм) требуются для согласования уровней сигналов на шине I2C. Они устанавливаются только в том случае, если подобных резисторов (pull-up) нет на плате целевой платформы, к которой подключается МЭК. Расположение резисторов показано на рисунке 2. Внимание! При изготовлении МЭК эти резисторы не устанавливаются.

Рисунок 2 – Расположение резисторов

3 Габаритные размеры МЭК

Габаритные размеры МЭК указаны на рисунке 3.

Рисунок 3 – Габариты МЭК

4 Подключение МЭК к платформе СКИФ

4.1 Физическое подключение к платформе СКИФ

К модулю MCom-03 на несущей плате Rock Pi N10 МЭК подключается к 15-контактному разъёму САМ. Для подключения используется стандартный «прямой» шлейф-переходник тип A 22pin-to-15pin (puc.4), контакты которого размещены на одной плоскости шлейфа. При использовании указанного шлейфа используется режим передачи видеоданных по двум линиям (2-Lane).

Рисунок 4 – Физическое подключение МЭК к модулю МСот-03

К модулям PicoS, NanoS МЭК подключается стандартным «прямым» шлейфом-переходником тип A 22pin-to-22pin, с шагом 0,5 мм (рис.5, рис.6), контакты которого размещены на одной плоскости шлейфа. Подключать МЭК следует в разъем CSI0 (XS7) на модуле PicoS, в разъем MIPI_CSI0 (XS9) на модуле NanoS. При использовании указанного шлейфа используется режим передачи видеоданных по двум либо четырём линиям (2-Lane или 4-Lane) в зависимости от выбранного режима работы МЭК.

Разъём Ј1	Шлейф	Разъём CSI0
МЭК	22pin-to-22pin тип А, шаг 0,5 мм	на модуле PicoS
	AWM 20624 80C 60V VW-1 AWM 20624 80C 60V VW-1 AWM 20624 80C 60V VW-1 AWM 20624 80C 60V VW-1 AWM 20624 80C 60V VW-1 AWM 20624 80C 60V VW-1 AWM 20624 80C 60V VW-1 AWM 20624 80C 60V VW-1	

Рисунок 5 – Физическое подключение МЭК к модулю PicoS

Разъём J1 МЭК	Шлейф 22pin-to-22pin тип А, шаг 0,5 мм	Разъём MIPI_CSI0 на модуле NanoS
	AWM 20824 80C 60V VW-1 AWM 20824 80C 60V VW-1 AWM 20824 80C 60V VW-1 AWM 20824 80C 60V VW-1 AWM 20824 80C 60V VW-1 AWM 20824 80C 60V VW-1 AWM 20824 80C 60V VW-1 AWM 20824 80C 60V VW-1	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

Рисунок 6 – Физическое подключение МЭК к модулю NanoS

4.2 Программное подключение к платформе СКИФ

Проверка подключения и доступности МЭК осуществляется командой:

felix-sensor-test

Эта команда проверит подключение всех поддерживаемых платформой МЭК и выведет их статус. Если МЭК правильно определен системой и доступен для видеозахвата ответом на команду будут следующие строки:

X: IMX327 (v0xb201 imager 0)

•••

mode 0: 1920x 1080 @30.00 12bit (total 4400x1125 mipi_lane=2) exposure=(29..1000000) flipping=horizontal|vertical pixel rate 74.2500 Mpx/s, bit rate 445.5000 Mbits/s (per mipi lane)

•••

В случае, если МЭК не определен системой, то для него ответ на команду felixsensor-test будет следующим:

X: IMX327 - no modes display available

Для запуска видеотрансляции с выводом изображения на монитор через HDMI необходимо подать команду:

gst-launch-1.0 felixsrc setup-file=/etc/felix/imx327/imx327.cfg sensor=IMX327 sensor-mode=0 exposure-auto=true exposure-auto-max-time=30000 exposureauto-min-time=16 exposure-auto-priority=1 awb-enable=true awb-algorithm=pid awb-mode=high-lum ! video/x-raw,format=BGR,width=1920,height=1080 ! queue ! fpsdisplaysink video-sink="kmssink driver-name=mali-dp max-lateness=-1 force-modesetting=true"-v 2>&1

Чтобы прервать видеотрансляцию нажмите комбинацию клавиш "Ctrl" + "C". После остановки команды в терминале выведется FPS видеотрансляции (количество потерянных кадров, моментальное и среднее значения).

Для вывода свойств элемента felixsrc воспользуйтесь описанной ниже командой. У данных свойств будет описан тип значения, значение, установленное по умолчанию и диапазон возможных принимаемых значений:

gst-inspect-1.0 felixsrc

Параметр sensor-mode должен соответствовать разрешению устройства видеовывода. Для вывода доступных режимов устройства видеовывода можно воспользоваться командой:

modetest -M mali-dp -c

Для принудительного масштабирования захватываемого видео под устройство видеовывода можно задать разрешение видеопотока для вывода, например: *video/x-raw,format=BGRx,width=1920,height=1080*

Режимы работы сенсора с порядковым номером 0, 1 гарантируют 30FPS при выводе изображения на экран с разрешением Full HD. Порядковый номер режима определяется командой felix-sensor-test.

№	Разрешение	Разрядность	Частота (fps)	Количество линий MIPI- CSI	Скорость Mbps/lane	Описание
0	1920x1080	10 бит	30	2	445,5	Полное изображение с МЭК, референсный клок 37,125 МГц
1	1920x1080	10 бит	60	4	445,5	Полное изображение с МЭК, референсный клок 37,125 МГц

Таблица 4. Характеристики поддерживаемых режимов МЭК

Для запуска потоковой передачи видео по протоколу RTSP необходимо подать следующую команду:

gst-rtsp-test-launch "felixsrc setup-file=/etc/felix/imx327/imx327.cfg sensor=IMX327 sensor-mode=0 alloc-buffers=10 buf-mode=query exposureauto=true awb-enable=true awb-algorithm=pid awb-mode=high-lum ! queue maxsize-buffers=1 ! video/x-raw,format=NV12 ! omxh264enc control-rate=constant target-bitrate=10000000 ! rtph264pay name=pay0 pt=96"

В консоль процессорного модуля будет выведено сообщение:

stream ready at rtsp://127.0.0.1:8554/test

Для приёма и вывода видео на ПК необходимо подать команду ffplay в формате:

ffplay rtsp://<module-address>:8554/test

где <module-address> - это IP-адрес процессорного модуля.

5 Подключение МЭК к платформе RockChip RK3588

5.1 Физическое подключение к модулю ROC-RK3588S-PC FireFly

К модулю ROC-RK3588S-PC МЭК подключается стандартным «обратным» 22-контактным FPC-шлейфом (тип В), контакты которого размещены на разных плоскостях шлейфа, через специальный адаптер DS-ADP1 (MPЦH.ADP.50.001) и далее стандартным «прямым» 30-контактным FPC-шлейфом (тип А), контакты которого размещены на одной плоскости шлейфа, к разъёму J4701 (MIPI_CSIO) платы FireFly (рис.7). При таком подключении используется режим передачи видеоданных по двум либо четырём линиям (2-Lane или 4-Lane) в зависимости от настроек внутренних регистров МЭК и драйвера операционной системы модуля ROC-RK3588S-PC.

Рисунок 7 – Физическое подключение МЭК к модулю ROC-RK3588S-PC

5.2 Программное подключение к модулю ROC-RK3588S-PC FireFly

Дальнейшие действия приведены в случае, если пользователь работает с SDK от производителя FireFly. Инструкция по работе с SDK и его

скачиванию находится на сайте производителя FireFly - <u>https://wiki.t-</u> <u>firefly.com/en/ROC-RK3588S-PC/linux_compile.html</u>

5.2.1 Добавление и редактирование драйверов

В случае необходимости драйвера и дерево устройств можно скачать на странице продукта - <u>Модуль камеры на IMX327</u>.

Драйвера требуется разместить в SDK от производителя FireFly для получения образа OC с поддержкой МЭК. Драйвера находятся в директории kernel/drivers/media/i2c. Файлы дерева устройств в kernel/arch/arm64/boot/dts/rockchip. Также, чтобы добавить драйвера для МЭК в образ OC требуется добавить строку *kernel/drivers/media/i2c/imx327.ko* в modules.builtin в директории kernel/. Для добавления МЭК в образ ядра можно воспользоваться menuconfig или добавить строку *CONFIG_VIDEO_IMX327=y* в rockchip_defconfig в директории kernel/arch/arm64/configs. Файл v4l2-control.h требуется добавить в директорию kernel/include/uapi/linux. Или добавить требуемые ID для новых переменных самостоятельно.

При использовании дерева устройств и добавлении драйвера для МЭК можно обратиться к руководству производителя FireFly - <u>https://wiki.t-firefly.com/en/ROC-RK3588S-PC/usage_camera.html</u>

После первоначальной компиляции образа OC по инструкции производителя FireFly требуется скопировать с заменой драйвера и dtsi файл и выполнить команды:

./build.sh kernel

./build.sh updateimg

Удостоверьтесь, что драйвера для МЭК были скомпилированы и добавлены в ядро. Если этого не произошло – требуется редактировать конфигурацию сборки. Добавление драйверов в ядро было описано выше. В результате выполнения команд в директории rockdev/pack должен находится образ с поддержкой МЭК.

В случае использования собственных драйверов или дерева устройств требуется обращаться к руководству производителя FireFly.

5.2.2 Вывод изображения с МЭК

Для вывода изображения с МЭК можно использовать стандартные инструменты V4L и gstreamer. Пример команды для вывода изображения:

gst-launch-1.0 v4l2src device=/dev/video11 io-mode=4 ! queue ! video/xraw,format=NV12,width=1920,height=1080,framerate=60/1 ! glimagesink

Для изменения настроек вручную можно использовать следующую команду:

v4l2-ctl -d /dev/v4l-subdev2 --set-ctrl *ctrl name*=*value*

Вместо *ctrl name* и *val* указываются конкретные переменные и значения. Возможные варианты можно вывести командой:

v4l2-ctl -d /dev/v4l-subdev2 --list-ctrls

5.2.3 Использование ISP

Для обработки изображения требуется скачать конфигурационный файл с форматом JSON для используемого МЭК и разместить его в директории /etc/iqfiles платформы. Имя файла должно быть следующим «imx327_IMX327_NC.json». Далее возможны два варианта включения обработки.

1) Выполните команды:

cd /etc/init.d sudo sh rkaiq 3A.sh start

2) Выполните команды:

cd /usr/bin sudo ./rkaiq_3A_server

МАКРО ЕМС, 192289 г.Санкт-Петербург, Гаражный проезд дом 1 литера И, www.macroems.ru

Для выключения требуется выполнить следующие команды:

cd /etc/init.d

sudo sh rkaiq_3A.sh stop

5.3 Физическое подключение к модулю NanoR

К модулю NanoR МЭК подключается в один из стандартных разъёмов CSI-2 Port 1 (XS12) и CSI-2 Port 2 (XS13). Для подключения используется 22-контактный FPC-шлейф (Тип А) с шагом 0.5 мм.

Разъём Ј1	Шлейф	Разъём CSI-2 Port 1
МЭК	22pin-to-22pin тип А, шаг 0,5 мм	модуля NanoR
	AWM 20624 80C 60V VW-1 AWM 20624 80C 60V VW-1 AWM 20624 80C 60V VW-1 AWM 20624 80C 60V VW-1 AWM 20624 80C 60V VW-1 AWM 20624 80C 60V VW-1 AWM 20624 80C 60V VW-1 AWM 20624 80C 60V VW-1	SI-2 Polyada

Рисунок 8 – Физическое подключение МЭК к модулю NanoR

5.4 Программное подключение к модулю NanoR

Поддержка МЭК включена в ядро для модуля NanoR. Для проверки успешной инициализации МЭК можно воспользоваться следующей командой:

```
dmesg | grep imx327
```

В случае успешной инициализации МЭК в консоли должны отображаться соответствующие сообщения. Пример:

- [7.494471] imx327 12-001a-2: set the video v4l2 subdev api
- [7.494495] imx327 12-001a-2: set the media controller

[7.494588] imx327 12-001a-2: v4l2 async register subdev success

[7.494846] imx327 13-001a-2: driver version: 00.01.06

[7.544175] rockchip-csi2-dphy csi2-dphy0: dphy0 matches m00_b_imx327 12-001a-2:bus type 5

Для вызова видео можно использовать gstreamer. При подключении МЭК к разъёму XS12 модулю соответствует устройство video22, XS13 – video31. Информацию об устройствах можно вывести командой *media-ctl – p –d /dev/mediaX*, где X – номер устройства. Для вывода используется selfpath или mainpath. Пример паттерна для вызова видео:

gst-launch-1.0 v4l2src device=/dev/video22 io-mode=4 ! queue ! video/xraw,format=NV12,width=1080,height=720,framerate=60/1 ! videoconvert ! autovideosink

Паттерн для вывода информации о принимаемом видео:

gst-launch-1.0 v4l2src device=/dev/video22 io-mode=4 ! queue ! video/xraw,format=NV12,width=1080,height=720,framerate=60/1 ! videoconvert ! fpsdisplaysink video-sink=autovideosink text-overlay=true -v

Данный конвейер будет показывать количество выводимых на дисплей кадров. Для просмотра характеристик принимаемого потока требуется использовать V4L:

v4l2-ctl –d /dev/video22 --stream-mmap=4 --verbose

В случае использования V4L будет отображено количество кадров принимаемое аппаратно. В случае необходимости прочие характеристики могут быть отображены с помощью v4l2-ctl и media-ctl. Для справки обращаться к помощи по командам (v4l2-ctl – h и media-ctl - h).

Для записи видеопотока с МЭК использовать следующий конвейер:

gst-launch-1.0 v4l2src device=/dev/video22 io-mode=4 ! queue ! video/xraw,format=NV12,width=1920,height=1080,framerate=60/1 ! videoconvert ! filesink location=out.yuv

Для воспроизведения видео можно использовать ffplay:

ffplay -f rawvideo -video_size 1920x1080 -pix_fmt nv12 out.yuv

Для калибровки isp вызвать следующие команды:

cd /usr/bin sudo ./rkaiq 3A server

Окно терминала с запущенным приложением будет занято. Достаточно запустить калибровку единожды, при перезагрузке устройства настройки ISP сохраняются. Калибровку необходимо осуществлять заново при подключении новых МЭК. Для выполнения калибровки необходим соответствующий файл в директории /etc/iqfiles/ в формате JSON.

Версии основных библиотек:

1.20.3-0ubuntu1 arm64: gir1.2-gstreamer-1.0, gir1.2-gstreamer-1.0, gstreamer1.0-libav, gstreamer1.0-plugins-bad, gstreamer1.0-plugins-good, gstreamer1.0-pulseaudio, gstreamer1.0-tools, libgstreamer-opencv1.0-0, libgstreamer-plugins-bad1.0-0, libgstreamer-plugins-good1.0-0, libgstreamer1.0-0

1.20.1-1ubuntu0.1 arm64: gstreamer1.0-alsa, gstreamer1.0-gl, gstreamer1.0-plugins-base-apps, gstreamer1.0-plugins-base, gstreamer1.0-x, libgstreamer-gl1.0-0, libgstreamer-plugins-base1.0-0

1.5.0-4ubuntu2.2firefly6 arm64: gstreamer1.0-rockchip1, librockchip-mpp-dev, librockchip-mpp1, librockchip-vpu0, rockchip-mpp-demos

5.0x3.0 arm64: camera-engine-rkaiq

6 Подключение МЭК к платформе RockChip RK3568

6.1 Физическое подключение к модулю DS-RK3568-EVB rev.1

Физическое подключение МЭК к модулю DS-RK3568-EVB rev.1 от бренда DiaSom осуществляется в соответствии с рисунком 9.

Разъём MIPI_CSI модуля DS-RK3568-EVB rev.1	30-контактный FPC-шлейф тип В	Адаптер DS- ADP1	22-контактный FPC-шлейф тип В	Разъём J1 МЭК
	ANN DECK BE VEN VIN ANN DECK BE VEN VIN VIN ANN DECK BE VEN VIN ANN DECK BE VEN VIN ANN DECK VEN VIN ANN DECK VEN VEN VIN ANN DECK VEN VEN VIN ANN DECK VEN	2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	MIT Year Here <thh< td=""><td></td></thh<>	

Рисунок 9 – Подключение МЭК к модулю DS-RK3568-EVB rev.1

6.2 Программное подключение к модулю DS-RK3568-EVB rev.1

В случае корректного определения МЭК платформой при выполнении команды:

dmesg | grep imx327

Должен быть вывод об успешном определении МЭК. Пример вывода: rockchip-csi2-dphy csi2-dphy0: dphy0 matches imx327 4-001a: bus type 35048384

Кроме этого, при вызове команды:

media-ctl –p –d /dev/media0

В дереве устройств должен отображаться v4l-subdev, соответствующий МЭК. Для работы с МЭК и вывода изображения можно использовать стандартные инструменты V4L и фреймворк gstreamer. Для просмотра параметров МЭК можно воспользоваться следующей командой:

v4l2-ctl -d /dev/v4l-subdevX --list-ctrls

Вместо X в тексте команды должен находится номер устройства, его можно узнать, использовав команды, указанные ранее. Обычно номер устройства - 2. В результате выполнения команды должны быть выведены все настройки МЭК, используемые его драйвером, и соответствующая информация (диапазон значений параметра, флаги, etc.).

Для работы с ISP потребуется конфигурационный файл с форматом JSON. Конфигурационный файл можно скачать на странице продукта - Модуль камеры на IMX327.

Конфигурационный файл требуется разместить в директории /etc/iqfiles. Для включения обработки ISP следует выполнить следующие команды:

cd /usr/bin

sudo ./rkaiq_3A_server

В результате запустится процесс rkaiq_3A и в окно терминала будет выводится информация о работе ISP. Обратите внимание, что в таком случае потребуется открыть второе окно терминала, т.к. предыдущее будет использовано rkaiq 3A.

Для вывода изображения можно использовать следующую команду:

gst-launch-1.0 v4l2src device=/dev/video0 io-mode=4 ! queue ! video/xraw,format=NV12,width=1920,height=1080,framerate=30/1 ! glimagesink

В результате на экране должно появится изображение с МЭК. Также можно использовать стандартные команды для gstreamer для конвертации видеопотока, записи и передачи данных.

7 Меры предосторожности

Внимание! Подключение МЭК к разъёмам, предназначенным для других целей, или с помощью других шлейфов, не гарантирует его работоспособность и может привести к выходу из строя! При неправильном подключении шлейфов, может быть, короткое замыкание между крайними контактами питания 1 и 22 разъёма J1 МЭК. Рекомендуется проверить отсутствие замыкания между ними до подачи питания при всех подключенных шлейфах!