

196105, Россия, Санкт-Петербург, ул. Свеаборгская, д.12, пом.3H ИНН 7810895610 КПП 781001001 Р/с 40702810206000003697 БИК 044030920 К/с 30101810000000000920

САНКТ-ПЕТЕРБУРГСКИЙ ФИЛИАЛ ПАО "ПРОМСВЯЗЬБАНК"

ОКПО 43468759 ОКВЭД 26.30, 27.90, 46.69.9, 47.78, 47.99, 72.1, 73.20.1

Контрактное производство электроники

# Модуль вычислительный гетерогенный - «Nano-ITX» Руководство по эксплуатации

МРЦН.1339.Nano.01.000 РЭ

Санкт-Петербург 2023г.

## Оглавление

| Сокращения, определения и термины        | 4  |
|------------------------------------------|----|
| Общее описание                           | 5  |
| Основные характеристики модуля           | 6  |
| Основные сферы применения модуля         | 7  |
| Характеристики модуля                    | 8  |
| Расположение интерфейсов на плате модуля | 9  |
| Габаритный чертеж модуля                 | 10 |
| Комплектность                            | 11 |
| ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ                  | 12 |
| Пароль системы                           | 13 |
| Отображение видео захвата с USB-камеры   | 14 |
| Интерфейс DIO                            | 15 |
| Общее описание                           | 15 |
| Цоколевка и схемотехника разъема DIO     | 15 |
| Используемые сигналы подключения DIO     | 19 |
| РЕАЛИЗАЦИЯ DIO В ОС LINUX                | 19 |
| Доступ к DIO из командной строки         | 20 |
| Доступ к DIO из С                        | 21 |
| RS-232                                   | 23 |
| Общее описание                           | 23 |
| Параметры интерфейса                     | 23 |
| Схемотехника разъема RS-232              | 23 |
| Используемые сигналы подключения RS-232  | 23 |

| Доступ к RS-232 из командной строки                 | 24 |
|-----------------------------------------------------|----|
| Доступ к RS-232 из С                                | 24 |
| RS-485                                              | 25 |
| Общее описание                                      | 25 |
| Параметры интерфейса                                | 25 |
| Цоколевка и схемотехника разъема RS-485             | 25 |
| Используемые сигналы подключения RS-485             | 26 |
| РЕАЛИЗАЦИЯ ИНТЕРФЕЙСА RS-485 в ОС LINUX             | 27 |
| Доступ к RS-485 из командной строки                 | 27 |
| Доступ к RS-485 из С                                | 28 |
| Последовательный интерфейс UART0 и UART1            | 29 |
| Общее описание                                      | 29 |
| Цоколевка и схемотехника разъема UART0 и UART1      | 29 |
| Используемые сигналы подключения UART0 и UART1      | 30 |
| Особенности работы микросхемы 1892BA018 СнК «Скиф»  | 31 |
| Канал поддержки                                     | 32 |
| ССЫЛКИ С САЙТА НППІ «ЭЛВИС» ПО СНК 1892ВА018 «СКИФ» | 33 |

#### Сокращения, определения и термины

ВКС - видеоконференцсвязь;

ИИ - искусственный интеллект;

ККМ - контрольно-кассовая машина;

ОС - операционная система;

Охлаждение: набор средств (вентилятор, радиатор) для отвода тепла гетерогенного вычислительного модуля «Nano-ITX»;

ПО – программное обеспечение;

СнК – система на кристалле;

DSP - цифровой сигнальный процессор (анг. digital signal processor);

NPU - нейронный процессор (анг. neural processing unit);

SBC - одноплатный компьютер (анг. single board computer);

SBL - примитивный загрузчик ОС (анг. simple boot loader );

TOPs: единица скорости вычислений процессора - триллион операций в секунду (анг. trillion operations per second).

#### Общее описание

Модуль вычислительный гетерогенный - «Nano-ITX» МРЦН.1339.Nano.01.000 (далее модуль) является законченным устройством класса SBC в формфакторе Nano-ITX и нацелен для работы с классическими и нейросетевыми алгоритмами в равной степени.

Модуль базируется на СнК 1892BA018, коммерческое название «СКИФ» от НПЦ «Элвис», представляющий собой четырёхъядерный процессор архитектуры Arm A53 с максимальной частотой до 2 ГГц дополненный DSP сопроцессором Elcore-50, модулем цифрового радио и прочими стандартами интерфейсами, характерными для такого процессора.

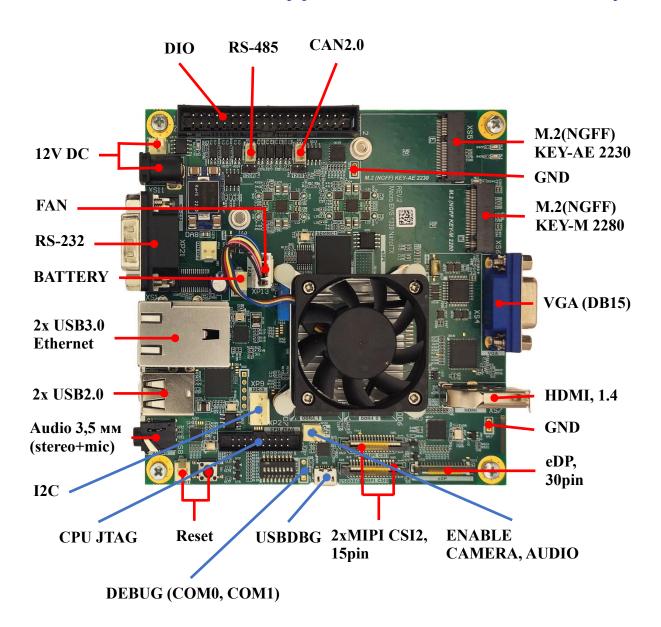
Модуль работает под операционными системами семейства Linux. На текущий момент проверена совместимость модуля с операционными системами AltLinux, RedOS.

Текущая версия КД – литера «O2».

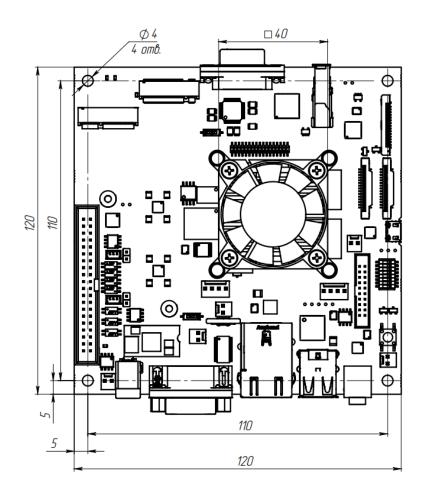
## Основные характеристики модуля

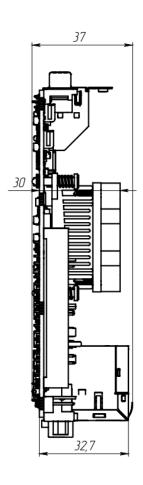
- ✓ российский процессор 1892BA018 СКИФ, ядро: 4хА53, блок ИИ (DSP+NPU): 1,2 TOPS
  - ✓ ОЗУ: 8 Гбайт
  - ✓ ПЗУ: 32 Гбайт
- ✓ интерфейсы: Ethernet 1000/100/10, 2хМ.2, 4х USB; RS-485, RS-232, CAN, VGA/HDMI/eDP, 2хСSI-2, DIO 24.
  - ✓ энергопотребление: < 10 Вт</p>
  - ✓ OC: Altlinux, RedOS

## Основные сферы применения модуля




Модуль предназначен для использования в качестве универсального вычислителя для следующих устройств: рабочие станции начального уровня, тонкие клиенты, банкоматы, торговые терминалы и т.д.


# Характеристики модуля


| Характеристики        | Значение                                     |
|-----------------------|----------------------------------------------|
| Общие характеристики  |                                              |
| Габариты              | 120х120х37 мм                                |
| Процессор             | СКИФ, Arm7, 4xA53, 2 ГГц+ DSP Elcore-50, 1,2 |
|                       | TOPS                                         |
| Операционная система  | RedOS, AltLinux, пользовательская Linux      |
| Питание               | 12B, 1,5A                                    |
| Охлаждение            | Активное                                     |
| Рабочий диапазон      | От минус 10 до 70 град. ℃                    |
| температур            |                                              |
| Память                |                                              |
| RAM (DDR4, на плате)  | 8 (2x4) ΓБ                                   |
| еММС, на плате        | 16 ГБ *                                      |
| qSPI (загрузчик)      | 16 МБ                                        |
| Сеть                  |                                              |
| Ethernet 1000Mb       | 1                                            |
| Wi-Fi                 | 1                                            |
| (т.2 модуль 2230 КЕҮ- |                                              |
| AE)                   |                                              |
| Видео интерфейсы      |                                              |
| HDMI, 1.4             | 1                                            |
| eDP, 30pin            | 1                                            |
| VGA (DB15)            | 1                                            |
| Прочие интерфейсы     |                                              |
| m.2 2280 KEY-M (SSD)  | 1                                            |
| USB 2.0               | 2                                            |
| USB 3.0               | 2                                            |
| Audio (stereo+mic)    | 1                                            |
| DIO                   | 8xDIO TTL 3,3 B + 8x Opto DI + 8x Opto DO    |
| I2C                   | 1                                            |
| CAN 2.0B              | 1                                            |
| MIPI-CSI-2 (15 pin)   | 2                                            |
| RS-485                | 1                                            |
| RS-232 (DB9)          | 1                                            |
| Аппаратное отключение | Да                                           |
| камеры и звука        |                                              |

<sup>\* -</sup> Характеристики и их значения могут быть изменены без уведомления



# Габаритный чертеж модуля



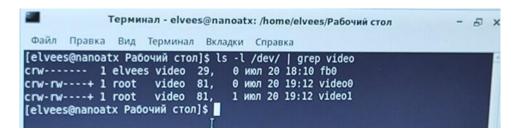


## Комплектность

- 1) Плата Nano\_ITX МРЦН.1339.Nano.01.000
- 2) Блок питания 12В, 1.5А (опционально)
- 3) Wi-Fi модуль и антенна (опционально)
- 4) Руководство по эксплуатации МРЦН.1339.Nano.01.000 РЭ (в электронном виде)

# Программное обеспечение

Программное обеспечение предоставлено «как есть» исключительно для демонстрационных целей.


# Пароль системы

Для доступа к настройкам системы уровня root необходимо использовать пароль — elvees.

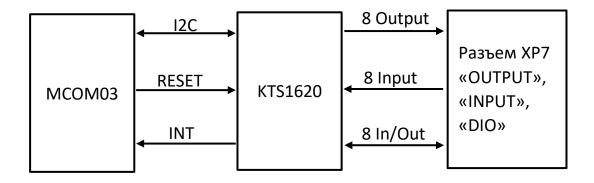
## Отображение видео захвата с USB-камеры

- 1. Подключить в свободный USB порт модуля «Nano-ITX» вебкамеру.
- 2. Убедиться, что веб-камера определилась в ОС Altlinux, выполнив следующие действия:
  - Открыть «Terminal».
  - Ввести в консоли «Terminal» следующую команду:

В результате выведутся адреса подключенной камеры, представленные на рисунке ниже.

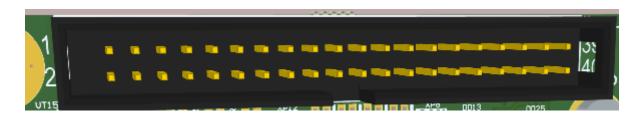


Вывод адресов подключенной веб-камеры


3. Для вывода видеопотока с веб-камеры ввести в консоли программы «Terminal» команду:

\* - номер видео порта модуля (video) в каталоге устройств (/dev) может отличаться от написанного видео порта в команде (video0). В случаи если вывод не отобразился с порта video0, воспользуйтесь портом video1.

## Интерфейс DIO

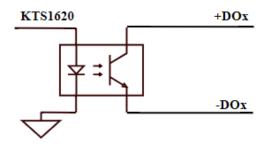

## Общее описание

Для реализации интерфейса DIO на модуле «Nano-ITX» используется микросхема Kinetic Technologies KTS1620ERG-TR (24 ports IO expander).



#### Цоколевка и схемотехника разъема DIO

Для подключения сигналов к DIO на плате используется разъем XP7 типа IDC-40.

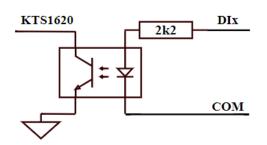



Разъем DIO

Таблица – Цоколевка разъема ХР7

| Номер       | Наименование        | Описание                | Тип       |
|-------------|---------------------|-------------------------|-----------|
| вывода<br>1 | вывода Output1_N    | Инверсный выход №1      | Opto      |
| 2           | Output1_P           | Прямой выход №1         | Opto      |
| 3           | Output2 N           | Инверсный выход №2      | Opto      |
| 4           | Output2_P           | Прямой выход №2         | Opto      |
| 5           | Output3_N           | Инверсный выход №3      | Opto      |
| 6           | Output3_N Output3_P | Прямой выход №3         | Opto      |
| 7           | Output3_1 Output4 N | Инверсный выход №4      | Opto      |
| 8           | Output4_P           | Прямой выход №4         | Opto      |
| 9           | Output5 N           | Инверсный выход №5      | Opto      |
| 10          | Output5_N Output5_P | -                       | -         |
| 11          | · –                 | Прямой выход №5         | Opto      |
|             | Output6_N           | Инверсный выход №6      | Opto      |
| 12          | Output6_P           | Прямой выход №6         | Opto      |
| 13          | Output7_N           | Инверсный выход №7      | Opto      |
| 14          | Output7_P           | Прямой выход №7         | Opto      |
| 15          | Output8_N           | Инверсный выход №7      | Opto      |
| 16          | Output8_P           | Прямой выход №8         | Opto      |
| 17          | +12B                | Напряжение питание      | Питание   |
| 18          | +5B                 | Напряжение питание      | Питание   |
| 19          | Input1              | Вход №1                 | Opto      |
| 20          | Input2              | Вход №2                 | Opto      |
| 21          | Input3              | Вход №3                 | Opto      |
| 22          | Input4              | Вход №4                 | Opto      |
| 23          | Input5              | Вход №5                 | Opto      |
| 24          | Input6              | Вход №6                 | Opto      |
| 25          | Input7              | Вход №7                 | Opto      |
| 26          | Input8              | Вход №8                 | Opto      |
| 27          | Input_COM           | Общий вход              | Opto      |
| 28          | Input_COM           | Общий вход              | Opto      |
| 29          | Reserved            | Зарезервированный вывод | -         |
| 30          | +3.3B               | Напряжение питания      | Питание   |
| 31          | Ground              | Земля                   | Земля     |
| 32          | Ground              | Земля                   | Земля     |
| 33          | DIO1                | Цифровой вход/выход №1  | TTL 3,3 B |
| 34          | DIO2                | Цифровой вход/выход №2  | TTL 3,3 B |
| 35          | DIO3                | Цифровой вход/выход №3  | TTL 3,3 B |
| 36          | DIO4                | Цифровой вход/выход №4  | TTL 3,3 B |
| 37          | DIO5                | Цифровой вход/выход №5  | TTL 3,3 B |
| 38          | DIO6                | Цифровой вход/выход №6  | TTL 3,3 B |
| 39          | DIO7                | Цифровой вход/выход №7  | TTL 3,3 B |
| 40          | DIO8                | Цифровой вход/выход №8  | TTL 3,3 B |

#### Схема подключения выходов Output P/N




Ограничения выходных сигналов:

Напряжение 24B DC

Ток 50mA DC

#### Схема подключения входов Input



Ограничения входных сигналов:

Напряжение 24B DC

Ток 3-10mA DC

#### Схема подключения входов/выходов DIO



Ограничения

цифровых

входов/выходов:

Напряжение 3,3B DC

Ток 5-10mA DC

Таблица - Соответствие выходов/входов микросхемы KTS1620 к внешним сигналам, поступающим/приходящим на выводы интерфейса DIO.

| Наименование | Внешний | Наименование | Внешний | Наименование | Внешний |
|--------------|---------|--------------|---------|--------------|---------|
| вывода       | сигнал  | вывода       | сигнал  | вывода       | сигнал  |
| KTS1620      |         | KTS1620      |         | KTS1620      |         |
| P0[0]        | Input5  | P1[0]        | Output5 | P2[0]        | DIO2    |
| P0[1]        | Input4  | P1[1]        | Output6 | P2[1]        | DIO1    |

| P0[2] | Input2  | P1[2] | Output3 | P2[2] | DIO4 |
|-------|---------|-------|---------|-------|------|
| P0[3] | Output8 | P1[3] | Output4 | P2[3] | DIO3 |
| P0[4] | Input6  | P1[4] | Output1 | P2[4] | DIO6 |
| P0[5] | Input3  | P1[5] | Output2 | P2[5] | DIO5 |
| P0[6] | Input1  | P1[6] | Input7  | P2[6] | DIO8 |
| P0[6] | Output7 | P1[6] | Input8  | P2[6] | DIO7 |

#### Используемые сигналы подключения DIO

- 1 Чип KTS1620 управляется по шине I2C (i2c\_0). Скорость шины I2C 100/400/1000кГц. Чип KTS1620 имеет 7-битный адрес 22h.
- 2 Сигнал RESET (сигнала сброса-активный уровень 0). При подаче сигнала логический 0 на время более 20мс микросхема KTS1620 переходит в состояние сброса. После подачи сигнала логическая 1 микросхема KTS1620 выходит из состояния сброса и инициализирует свои регистры значениями по умолчанию.
- 3 Сигнал INT. Выход из KTS1620. Активный уровень 0. При возникновении «событий» в KTS1620 данный сигнал переходит в активное состояние: логический 0. Данный механизм требует настройки в KTS1620 в соответствии с описанием.

Таблица - Соответствия сигналов микросхемы к выводам процессора M-COM

| Наименован | Вывод процессора | Описание            |
|------------|------------------|---------------------|
| ие сигнала | M-COM            |                     |
| RESET      | GPIO0_PORTD_6    | Сигнал сброса из    |
|            |                  | процессора          |
| INT        | GPIO1_PORTA_6    | Сигнал прерывания в |
|            |                  | процессор           |

Прерывание выводов интерфейса DIO не реализовано на аппаратном уровне.

#### Реализация DIO в OC Linux

B ОС реализован драйвер drivers/gpio/gpio-kts1620.c, модуль драйвера находится в /lib/modules/5.10.179/kernel/drivers/gpio/gpio-kts1620.ko

Для активизации драйвера необходимо добавить в описание дерева устройств (dts) следующий код:

```
&i2c0 {

gpio2: gpio@0x22 {

compatible = "kinetic,kts1620x-gpio";
```

```
reg = <0x22>;

status = "okay";

};
```

#### Доступ к DIO из командной строки

Необходимо выполнить экспорт ножек микросхемы KTS1620 в ОС Linux для передачи/приема через выводы интерфейса DIO из командной строки или скрипта shell. Согласно приведенной таблицы в разделе схематики, каждая ножка микросхемы получает/передает внешний сигнал через выводы интерфейса DIO.

Таблица – Соответствия внешних сигналов интерфейса DIO к адресу вывода микросхемы KTS1620 экспортированного в ОС Linux

| Внешний      | Адрес    | Внешний    | Адрес    | Внешний | Адрес    |
|--------------|----------|------------|----------|---------|----------|
| сигнал, с    | вывода   | сигнал, на | вывода   | сигнал, | вывода   |
| выводов Opto | микросхе | выводы     | микросхе | с/на    | микросхе |
| DI           | мы в ОС  | Opto DO    | мы в ОС  | выводы  | мы в ОС  |
|              | Linux    |            | Linux    | GPIO    | Linux    |
| Input1       | 430      | Output1    | 436      | DIO1    | 441      |
| Input2       | 426      | Output2    | 437      | DIO2    | 440      |
| Input3       | 429      | Output3    | 434      | DIO3    | 443      |
| Input4       | 425      | Output4    | 435      | DIO4    | 442      |
| Input5       | 424      | Output5    | 432      | DIO5    | 445      |
| Input6       | 428      | Output6    | 433      | DIO6    | 444      |
| Input7       | 438      | Output7    | 431      | DIO7    | 447      |
| Input8       | 439      | Output8    | 437      | DIO8    | 446      |

В качестве примера используется внешний сигнал, поступающий с вывода интерфейса opto DI (Input5).

1 Для экспорта данного вывода в ОС следует ввести следующие команды:

echo \$PIN0 >/sys/class/gpio/export

2 Необходимо настроить направление вывода интерфейса. По умолчанию он установлен на вход. Для того чтобы задать направление вывода воспользуйтесь следующими командами:

#### Направление на выход:

echo out >/sys/class/gpio/gpio\$PIN0/direction

#### Направление на вход:

echo in >/sys/class/gpio/gpio\$PIN0/direction

3 Чтобы прочитать значение вывода интерфейса opto DI воспользуйтесь командой cat, представленной ниже:

cat /sys/class/gpio/gpio\$PIN0/value

4 Если вывод микросхемы выставлен как выход, то установить значение «1» на нем можно командой:

echo 1 >/sys/class/gpio/gpio\$PIN0/value

#### Или значение «0»:

echo 0 >/sys/class/gpio/gpio\$PIN0/value

В качестве примера использования интерфейса DIO есть скрипт gpio\_test.sh. В ОС данный файл расположен: /usr/local/bin/

Скрипт gpio\_test.sh опрашивает состояние всех кнопок на тестирующей плате Test DIO rev2. При нажатии на кнопку:

- На линиях DIO происходит мигание соответствующего светодиода.
  - На линиях Opto DI/DO происходит триггерное переключение.

#### Доступ к DIO из С

1 Доступ осуществляется через new user-space GPIO API, которое использует character device /dev/gpiochipX и системные вызовы open(), close(), ioctl(), poll(), read(), write().

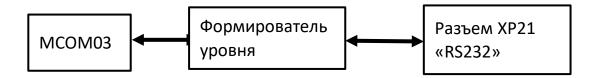
2 Доступ к выводам интерфейса DIO можно получить с помощью библиотеки libgpiod. Данная библиотека предоставляет шесть инструментов командной строки:

**gpiodetect** - список всех присутствующих в системе gpiochips, их названия, метки и количество линий GPIO;

**gpioinfo** - список всех линий указанных gpiochips, их имена, потребители, направление, активное состояние и дополнительные флаги;

gpioget - чтение значений указанных линий GPIO;

gpioset - установить значения указанных линий GPIO;


gpiofind - найти имя gpiochip и смещение строки по имени строки;

**gpiomon** - ждать событий на линиях GPIO, указывать какие события смотреть, сколько событий нужно обработать перед выходом или если события должно быть сообщено в консоль.

#### **RS-232**

#### Общее описание

В процессоре используется интерфейс UART3 (COM3).



#### Параметры интерфейса

- Скорость передачи данных от 9600 Бит/с до 115200 Бит/с
- 8 бит данных.
- 1 стоп бит.
- Контроль четности не поддерживается.
- Управление потоком RTS, CTS, DTR, DSR, DCD, RI.
- Соответствует требованиям стандарта EIA/TIA-232-F

#### Схемотехника разъема RS-232

Для подключения сигналов RS-232 к плате используется разъем XP21. Тип разъема XP21 – DB9 male. Для подключения к разъему XP21 необходимо использовать кабельный разъем DB9 female.

#### Используемые сигналы подключения RS-232

Таблица - Соответствия сигналов интерфейса RS-232 к выводам процессора M-COM

| Номер  | Вывод интерфейса | Порты вывода     | Описание                      |
|--------|------------------|------------------|-------------------------------|
| вывода | RS-232           | процессора М-СОМ |                               |
| 1      | DCD              | GPIO0_PORTA_4    | Сигнал DCD в процессор        |
| 2      | SOUT             | GPIO0_PORTB_1    | Выход данных ТХ из процессора |
| 3      | SIN              | GPIO0_PORTB_0    | Вход данных RX в процессор    |
| 4      | DTR              | GPIO0_PORTA_6    | Сигнал DTR из процессора      |
| 6      | DSR              | GPIO0_PORTA_3    | Сигнал DSR в процессор        |
| 7      | RTS              | GPIO0_PORTA_7    | Сигнал RTS из процессора      |

| 8 | 3 | CTS | GPIO0_PORTA_2 | Сигнал CTS в процессор |
|---|---|-----|---------------|------------------------|
| 9 | 9 | RI  | GPIO0_PORTA_5 | Сигнал RI в процессор  |

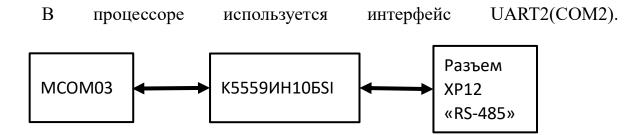
#### Доступ к RS-232 из командной строки

Интерфейс RS-232 является стандартным серийным портом. В операционной системе данный порт соответствует файл-устройство телетайп. RS-232 располагается в каталоге устройств /dev/ с именем ttyS3.

1 Пример отправки строки на скорости 115200 из shell:

2 Пример приема строки из shell:

cat /dev/ttyS3

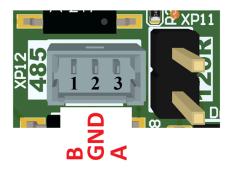

## Доступ к RS-232 из С

Для написания программы на языке С связанной с интерфейсом RS-232 достаточно стандартной библиотеки языка С (libc). В данной библиотеке находятся заголовочные файлы: fcntl.h, termios.h необходимые для работы с данным интерфейсом.

#### **RS-485**

#### Общее описание

Для реализации интерфейса RS-485 на модуле используется микросхема Миландр K5559ИH10БSI (RS-485 driver). Нагрузочный резистор 120 Ом установлен на плате.




#### Параметры интерфейса

Соответствует требованиям стандарта EIA/TIA-RS-485.

#### Цоколевка и схемотехника разъема RS-485

Для подключения сигналов RS-485 к плате используется разъем XP12. Тип разъема XP12 - SCT1251WV-3P (Scondar). Для подключения к разъему XP12 необходимо использовать кабельный разъем SCT1251MH-3P (Scondar). Для подключения нагрузочного резистора 120 Ом необходимо установить джампер MJ-O-6 (2,54мм) на разъем XP11.



Цоколевка разъема

Таблица выводов разъема интерфейса RS-485

| Номер вывода | Наименование вывода | Описание             |
|--------------|---------------------|----------------------|
| 1            | В                   | Инверсный вход/выход |
| 2            | GND                 | Земля                |
| 3            | A                   | Прямой вход/выход    |

#### Используемые сигналы подключения RS-485

- 1 Сигнал DE (активный высокий логический уровень) разрешает работу микросхемы Миландр К5559ИН10БSI на передачу сигналов в прямой выход А и инверсный выход В с процессора МСОМ03. При подаче сигнала в активное состояние логическую «1» на время более 0,7 мкс микросхема Миландр К5559ИН10БSI переходит в режим передатчика.
- 2 Сигнал RE (активный низкий логический уровень) разрешает работу микросхемы Миландр K5559ИH10БSI на прием сигналов с прямого входа A и инверсного входа B с процессора MCOM03. При подаче сигнала в логиченский «0» на время более 0,7 мкс микросхема Миландр K5559ИH10БSI переход в режим приемника.
- 3 Сигнал SIN поступает на вход в процессор MCOM03 с выхода RO микросхемы Миландр К5559ИН10БSI в режиме приемника.
- 4 Сигнал SOUT поступает на вход DI в микросхеме Миландр К5559ИН10БSI из процессора МСОМ03 в режиме передатчика.

Таблица - Соответствия сигналов интерфейса RS-485 к выводам процессора M-COM

| Наименовани | Порты вывода  | Описание                       |
|-------------|---------------|--------------------------------|
| е сигнала   | процессора М- |                                |
|             | COM           |                                |
| DE          | GPIO0_PORTB_2 | Выход управления микросхемы из |
|             |               | процессора. Разрешение входа   |
|             |               | микросхемы в режиме            |
|             |               | передатчика.                   |
| RE          | GPIO0_PORTB_3 | Выход управления микросхемы из |
|             |               | процессора. Разрешение выхода  |
|             |               | микросхемы в режиме приемника. |
| SIN         | GPIO0_PORTB_7 | Вход данных в процессор        |
| SOUT        | GPIO0_PORTD_0 | Выход данных из процессора     |

#### Реализация интерфейса RS-485 в ОС Linux

В ОС реализован драйвер. Драйвер использует стандартный API ядра Linux для интерфейса RS485. Исходный код драйвера находится в: drivers/tty/serial/8250/8250 dw.c

Драйвер собран монолитно в ядре ОС и не требует дополнительной загрузки.

#### Доступ к RS-485 из командной строки

Интерфейс RS-485 является стандартным серийным портом. В операционной системе данный порт соответствует файл-устройство телетайп. RS-485 располагается в каталоге устройств /dev/ с именем ttyS2.

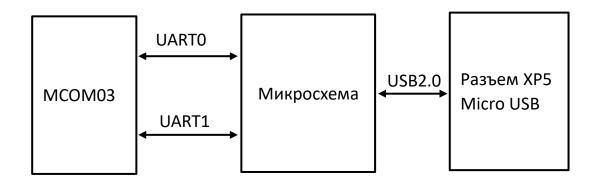
1 Пример отправки строки на скорости 115200 из shell:

2 Пример приема строки из shell:

cat /dev/ttyS2

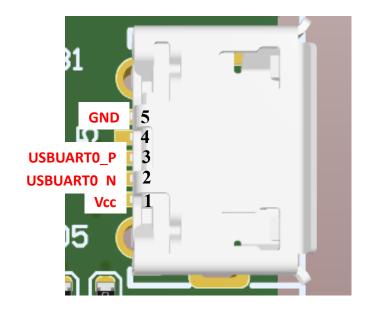
## Доступ к RS-485 из С

Для написания программы на языке С связанной с интерфейсом RS-485 достаточно стандартной библиотеки языка С (libc). В данной библиотеке находятся заголовочные файлы: linux/serial.h, sys/ioctl.h необходимые для работы с данным интерфейсом.


## Последовательный интерфейс UART0 и UART1

#### Общее описание

Для подключения используются интерфейсы процессора UART0(COM0) и UART1(COM1).


На интерфейсе UART0(COM0) реализована консоль процессора. На рабочей станции консоль всегда определяется на младшем из двух USB портов. Интерфейс UART1(COM1) не используется и может быть использован для прикладных задач. На рабочей станции данный интерфейс всегда определяется на старшем из двух USB портов.

Подключение к модулю осуществляется с использованием разъема microUSB. Маркировка на плате XP5 (USBDBG). Подача сигнала по уровню напряжения должна составлять +3,3B.



#### Цоколевка и схемотехника разъема UART0 и UART1

Для подключения сигналов UATR0 или UART1 к плате используется разъем XP5 (USBDBG). Тип разъема XP5 – microUSB.



Цоколевка разъема microUSB

Таблица – Цоколевка разъема ХР7

| Номер вывода | Наименование вывода | Описание             |
|--------------|---------------------|----------------------|
| 1            | Vcc                 | Напряжение питания   |
| 2            | USBUART0_P          | Прямой вход/выход    |
| 3            | USBUARTO_N          | Инверсный вход/выход |
| 5            | GND                 | Земля                |

## Используемые сигналы подключения UART0 и UART1

Таблица - Соответствия сигналов интерфейса UART0 и UART1 выводам процессора M-COM

| Наименование | Порты вывода     | Описание                      |
|--------------|------------------|-------------------------------|
| сигнала      | процессора М-СОМ |                               |
| UART0_SOUT   | GPIO1_PORTB_6    | Выход данных ТХ из процессора |
| UART0_SIN    | GPIO1_PORTB_7    | Вход данных RX в процессор    |
| UART1_SOUT   | GPIO0_PORTB_6    | Выход данных ТХ из процессора |
| UART1_SIN    | GPIO0_PORTD_5    | Вход данных RX в процессор    |

## Особенности работы микросхемы 1892BA018 СнК «Скиф»

Работа интерфейсов модуля Nano-ITX базируется на работе микросхемы 1892ВА018 СнК «СКИФ». В данной версии модуля используются инженерные образцы данной микросхемы, которые обуславливают особенности его работы. НПЦ «Элвис» планирует поправить аппаратную часть микросхемы в коммерческих версиях.

Таблица – Особенности работы различных характеристик модуля Nano-ITX

| Характеристики | Особенности                                                              | Способы обхода                                                                                                                                                                                                                                                                                                         |
|----------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HDMI, 1.4      | Срыв синхронизации, в результате возникают искажение или мерцание экрана | Решение 1:  Запуск скрипта с рабочего стола «HDMI turning».  В открывшейся консоли терминала с вопросом хорошего изображения картинки отвечать клавишей «п» (нет), пока не появится хорошее изображение. Когда появится хорошее изображение экрана монитора нажать клавишу «у» (да).  Решение 2:  Перезапустить модуль |
| VGA(DB15)      | Срыв синхронизации, в результате возникают искажение или мерцание экрана | Решение: 1) Запуск скрипта с рабочего стола «HDMI turning». См. выше.                                                                                                                                                                                                                                                  |

## Канал поддержки

Nano\_Pico\_ITX\_support - 49aff466.macroems.ru@emea.teams.ms

Пожалуйста, сообщите вашему менеджеру (от Макро Групп) ваш домен почты для добавления в поддержку.

# Ссылки с сайта НПЦ «Элвис» по СнК 1892BA018 «Скиф»

Комплект для разработки ПО

Готовые сборки образов ОС Linux

Информация по установке и переустановке ОС находится на странице продукта