

NanoS

Руководство по эксплуатации

МРЦН.467444.001РЭ

1 Описание и работа. 7 1.1 Назначение изделия 7 1.2 Технические характеристики 10 1.3 Комплект поставки. 12 2 Использование по назначению 13 2.1 Эксплуатационные ограничения. 13 2.2 Карта интерфейсов модуля. 13 2.3 Подключение модуля. 14 2.4 Авторизация в системе 14 2.5 Подключение к модулю по сетевому протоколу SSH. 14 2.5.1 Подключение по SSH через командную строку Windows. 14 2.5.2 Подключение по SSH через командную строку Linux. 15 2.6 Интерфейс USB 16 2.6.2 Запуск USB-камеры на модуле. 17 2.7 Интерфейс DIO. 18 2.7.1 Общие сведения. 18 2.7.2 Цоколевка и схемотехника. 28 2.7.3 Используемые сигналы подключения DIO. 21 2.7.4 Реализация DIO в системе Linux. 21 2.7.5 Доступ к интерфейсу DIO из С 23 2.8.1 Общие сведения. 24 2.8.1 Общие сведения. 24 2.8.2 Цоколевка и схемотехника. 24 2.8.3 Используемые сигналы подключения RS-232. 25	Перечень сокращений	5
1.1 Назначение изделия 7 1.2 Технические характеристики 10 1.3 Комплект поставки 12 2 Использование по назначению 13 2.1 Эксплуатационные ограничения 13 2.2 Карта интерфейсов модуля 13 2.3 Подключение модуля 13 2.4 Авторизация в системе 14 2.5 Подключение к модулю по сетевому протоколу SSH 14 2.5.1 Подключение по SSH через командную строку Windows 14 2.5.2 Подключение по SSH через командную строку Linux 15 2.6 Интерфейс USB 16 2.6.1 Общие сведения 16 2.7.1 Интерфейс DIO 18 2.7.1 Общие сведения 18 2.7.3 Используемые сигналы подключения DIO 21 2.7.4 Реализация DIO в системе Linux 21 2.7.5 Доступ к интерфейсу DIO из С 23 2.8 Интерфей RS-232 24 2.8.1 Общие сведения 24 2.8.2 Цоколевка и схемотехника 24 2.8.3 Используемые сигналы подключения RS-232 25 2.8.4 Доступ к RS-232 из С 26 2.9.1 Общие сведения 25 2.8.5 Доступ к RS-232 из С </td <td>1 Описание и работа</td> <td>7</td>	1 Описание и работа	7
1.2 Технические характеристики. 10 1.3 Комплект поставки 12 2 Использование по назначению 13 2.1 Эксплуатационные ограничения 13 2.2 Карта интерфейсов модуля 13 2.3 Подключение модуля 14 2.4 Авторизация в системе 14 2.5 Подключение к модулю по сетевому протоколу SSH 14 2.5.1 Подключение по SSH через командную строку Windows 14 2.5.2 Подключение по SSH через командную строку Linux 15 2.6 Интерфейс USB 16 2.6.2 Запуск USB-камеры на модуле 17 2.7 Интерфейс DIO 18 2.7.1 Общие сведения 18 2.7.2 Цоколевка и схемотехника 18 2.7.3 Используемые сигналы подключения DIO 21 2.7.4 Реализация DIO в системе Linux 21 2.7.5 Доступ к интерфейс DIO из С 23 2.8 Интерфейс RS-232 24 2.8.1 Общие сведения 24 2.8.2 Цоколевка и схемотехника 24 2.8.3 Используемые сигналы подключения RS-232 25 2.8.4 Доступ к RS-232 из С 26 2.9.1 Общие сведения 26 2.9.1 О	1.1 Назначение изделия	7
1.3 Комплект поставки. 12 2 Использование по назначению 13 2.1 Эксплуатационные ограничения. 13 2.2 Карта интерфейсов модуля. 13 2.3 Подключение модуля. 13 2.4 Авторизация в системе. 14 2.5 Подключение к модулю по сетевому протоколу SSH. 14 2.5.1 Подключение по SSH через командную строку Windows. 14 2.5.2 Подключение по SSH через командную строку Linux. 15 2.6 Интерфейс USB. 16 2.6.1 Общие сведения. 16 2.6.2 Запуск USB-камеры на модуле. 17 2.7 Интерфейс DIO. 18 2.7.1 Общие сведения. 18 2.7.2 Цоколевка и схемотехника. 18 2.7.3 Используемые сигналы подключения DIO. 21 2.7.4 Реализация DIO в системе Linux. 21 2.7.5 Доступ к интерфейсу DIO из C 23 2.8 Интерфейс RS-232. 24 2.8.1 Общие сведения. 24 2.8.2 Цоколевка и схемотехника. 24 2.8.3 Используемые сигналы подключения RS-232. 25 2.8.4 Доступ к RS-232 из командной строки. 25 2.8.5 Доступ к RS-232 из С. 26	1.2 Технические характеристики	
2 Использование по назначению 13 2.1 Эксплуатационные ограничения 13 2.2 Карта интерфейсов модуля 13 2.3 Подключение модуля 14 2.4 Авторизация в системе 14 2.5 Подключение к модулю по сетевому протоколу SSH 14 2.5.1 Подключение к модулю по сетевому протоколу SSH 14 2.5.2 Подключение по SSH через командную строку Windows 14 2.5.2 Подключение по SSH через командную строку Linux 15 2.6 Интерфейс USB 16 2.6.1 Общие сведения 16 2.6.2 Запуск USB-камеры на модуле 17 2.7 Интерфейс DIO 18 2.7.2 Цоколевка и схемотехника 18 2.7.3 Используемые сигналы подключения DIO 21 2.7.4 Реализация DIO в системе Linux 21 2.7.5 Доступ к интерфейсу DIO из С 23 2.8 Интерфейс RS-232 24 2.8.1 Общие сведения 24 2.8.2 Цоколевка и схемотехника 24 2.8.3 Используемые сигналы подключения RS-232 25 2.8.4 Доступ к RS-232 из командной строки 25 2.8.4 Доступ к RS-232 из С 26 2.9.1 Общие сведения 26	1.3 Комплект поставки	12
2.1 Эксплуатационные ограничения. 13 2.2 Карта интерфейсов модуля. 13 2.3 Подключение модуля. 14 2.4 Авторизация в системе. 14 2.5 Подключение к модулю по сетевому протоколу SSH. 14 2.5.1 Подключение по SSH через командную строку Windows. 14 2.5.2 Подключение по SSH через командную строку Linux. 15 2.6 Интерфейс USB. 16 2.6.1 Общие сведения. 16 2.6.2 Запуск USB-камеры на модуле. 17 2.7 Интерфейс DIO. 18 2.7.1 Общие сведения. 18 2.7.2 Цоколевка и схемотехника. 18 2.7.3 Используемые сигналы подключения DIO. 21 2.7.4 Реализация DIO в системе Linux. 21 2.7.5 Доступ к интерфейсу DIO из С 23 2.8 Интерфейс RS-232. 24 2.8.1 Общие сведения. 24 2.8.2 Цоколевка и схемотехника. 24 2.8.3 Используемые сигналы подключения RS-232. 25 2.8.4 Доступ к RS-232 из С 26 2.9.1 Общие сведения. 26 2.9.1 Общие сведения. 26 2.9.1 Общие сведения. 26 2.9.1	2 Использование по назначению	13
2.2 Карта интерфейсов модуля. 13 2.3 Подключение модуля 14 2.4 Авторизация в системе. 14 2.5 Подключение к модулю по сетевому протоколу SSH. 14 2.5.1 Подключение по SSH через командную строку Windows. 14 2.5.2 Подключение по SSH через командную строку Linux. 15 2.6 Интерфейс USB. 16 2.6.1 Общие сведения. 16 2.6.2 Запуск USB-камеры на модуле. 17 2.7 Интерфейс DIO. 18 2.7.1 Общие сведения. 18 2.7.2 Цоколевка и схемотехника. 18 2.7.3 Используемые сигналы подключения DIO. 21 2.7.5 Доступ к интерфейсу DIO из C. 23 2.8 Интерфейс RS-232. 24 2.8.1 Общие сведения. 24 2.8.2 Цоколевка и схемотехника. 24 2.8.3 Используемые сигналы подключения RS-232. 25 2.8.4 Доступ к RS-232 из командной строки. 25 2.8.5 Доступ к RS-232 из С. 26 2.9.1 Общие сведения. 26 2.9.1 Общие сведения. 26 2.9.1 Общие сведения. 26 2.9.1 Общие сведения. 26 2.9.1 Общие	2.1 Эксплуатационные ограничения	13
2.3 Подключение модуля. 14 2.4 Авторизация в системе. 14 2.5 Подключение к модулю по сетевому протоколу SSH. 14 2.5.1 Подключение по SSH через командную строку Windows. 14 2.5.2 Подключение по SSH через командную строку Linux. 15 2.6 Интерфейс USB. 16 2.6.1 Общие сведения. 16 2.6.2 Запуск USB-камеры на модуле. 17 2.7 Интерфейс DIO. 18 2.7.1 Общие сведения. 18 2.7.2 Цоколевка и схемотехника. 18 2.7.3 Используемые сигналы подключения DIO. 21 2.7.4 Реализация DIO в системе Linux. 21 2.7.5 Доступ к интерфейсу DIO из С. 23 2.8 Интерфейс RS-232. 24 2.8.1 Общие сведения. 24 2.8.2 Цоколевка и схемотехника. 24 2.8.3 Используемые сигналы подключения RS-232. 25 2.8.4 Доступ к RS-232 из командной строки 25 2.8.5 Доступ к RS-232 из С. 26 2.9 Интерфейс RS-485. 26 2.9 Интерфейс RS-485. 26 2.9 Интерфейс RS-485. 26	2.2 Карта интерфейсов модуля	13
2.4 Авторизация в системе 14 2.5 Подключение к модулю по сетевому протоколу SSH 14 2.5.1 Подключение по SSH через командную строку Windows 14 2.5.2 Подключение по SSH через командную строку Linux 15 2.6 Интерфейс USB 16 2.6.1 Общие сведения 16 2.6.2 Запуск USB-камеры на модуле 17 2.7 Интерфейс DIO 18 2.7.1 Общие сведения 18 2.7.2 Цоколевка и схемотехника 18 2.7.3 Используемые сигналы подключения DIO 21 2.7.4 Реализация DIO в системе Linux 21 2.7.5 Доступ к интерфейсу DIO из С 23 2.8 Интерфейс RS-232 24 2.8.1 Общие сведения 24 2.8.2 Цоколевка и схемотехника 24 2.8.3 Используемые сигналы подключения RS-232 25 2.8.4 Доступ к RS-232 из командной строки 25 2.8.5 Доступ к RS-232 из с 26 2.9 Интерфейс RS-485 26 2.9.1 Общие сведения 26 2.9.1 Общие сведения 26 2.9.1 Общие сведения 26	2.3 Подключение модуля	14
2.5 Подключение к модулю по сетевому протоколу SSH. 14 2.5.1 Подключение по SSH через командную строку Windows. 14 2.5.2 Подключение по SSH через командную строку Linux. 15 2.6 Интерфейс USB. 16 2.6.1 Общие сведения. 16 2.6.2 Запуск USB-камеры на модуле. 17 2.7 Интерфейс DIO. 18 2.7.1 Общие сведения. 18 2.7.2 Цоколевка и схемотехника. 18 2.7.3 Используемые сигналы подключения DIO. 21 2.7.4 Реализация DIO в системе Linux. 21 2.7.5 Доступ к интерфейсу DIO из С. 23 2.8 Интерфей RS-232. 24 2.8.1 Общие сведения. 24 2.8.2 Цоколевка и схемотехника. 24 2.8.3 Используемые сигналы подключения RS-232. 25 2.8.4 Доступ к RS-232 из командной строки. 25 2.8.5 Доступ к RS-232 из С. 26 2.9 Интерфей RS-485. 26 2.9 Интерфей RS-485. 26 2.9 Интерфей RS-485. 26	2.4 Авторизация в системе	14
2.5.1 Подключение по SSH через командную строку Windows. 14 2.5.2 Подключение по SSH через командную строку Linux. 15 2.6 Интерфейс USB. 16 2.6.1 Общие сведения. 16 2.6.2 Запуск USB-камеры на модуле. 17 2.7 Интерфейс DIO. 18 2.7.1 Общие сведения. 18 2.7.2 Цоколевка и схемотехника. 18 2.7.3 Используемые сигналы подключения DIO. 21 2.7.4 Реализация DIO в системе Linux. 21 2.7.5 Доступ к интерфейсу DIO из С. 23 2.8 Интерфейс RS-232. 24 2.8.1 Общие сведения. 24 2.8.2 Цоколевка и схемотехника. 24 2.8.3 Используемые сигналы подключения RS-232. 25 2.8.4 Доступ к RS-232 из командной строки 25 2.8.5 Доступ к RS-232 из С. 26 2.9 Интерфейс RS-485. 26 2.9 Интерфейс RS-485. 26 2.9 Интерфейс RS-485. 26 2.9 Интерфейс RS-485. 26	2.5 Подключение к модулю по сетевому протоколу SSH	14
2.6.1 Общие сведения	 2.5.1 Подключение по SSH через командную строку Windows 2.5.2 Подключение по SSH через командную строку Linux 2.6 Интерфейс USB 	14 15 16
2.7.1 Общие сведения. 18 2.7.2 Цоколевка и схемотехника 18 2.7.3 Используемые сигналы подключения DIO. 21 2.7.4 Реализация DIO в системе Linux. 21 2.7.5 Доступ к интерфейсу DIO из С. 23 2.8 Интерфейс RS-232. 24 2.8.1 Общие сведения. 24 2.8.2 Цоколевка и схемотехника 24 2.8.3 Используемые сигналы подключения RS-232. 25 2.8.4 Доступ к RS-232 из командной строки 25 2.8.5 Доступ к RS-232 из С. 26 2.9 Интерфейс RS-485. 26 2.9.1 Общие сведения. 26 2.9.2 Интерфейс RS-485. 26 2.9.3 Используемые сигналы подключения RS-232. 26 2.9.4 Доступ к RS-232 из С. 26 2.9.1 Общие сведения. 26 2.9.2 Интерфейс RS-485. 26	2.6.1 Общие сведения.2.6.2 Запуск USB-камеры на модуле.2.7 Интерфейс DIO.	16 17 18
2.8 Интерфейс RS-232	 2.7.1 Общие сведения	
2.8.1 Общие сведения. 24 2.8.2 Цоколевка и схемотехника. 24 2.8.3 Используемые сигналы подключения RS-232. 25 2.8.4 Доступ к RS-232 из командной строки. 25 2.8.5 Доступ к RS-232 из С. 26 2.9 Интерфейс RS-485. 26 2.9.1 Общие сведения. 26 2.9.2 Интерфейс RS-485. 26	2.8 Интерфейс RS-232	24
2.8.3 Используемые сигналы подключения RS-232	2.8.1 Общие сведения2.8.2 Цоколевка и схемотехника	24 24
2.9 Интерфейс RS-485 26 2.9.1 Общие сведения 26 2.9.2 Интерфейс RS-485 26	 2.8.3 Используемые сигналы подключения RS-232 2.8.4 Доступ к RS-232 из командной строки 2.8.5 Доступ к RS-232 из С	25 25 26
2.9.1 Общие сведения	2.9 Интерфейс RS-485	
2.9.2 цоколевка и схемотехника	2.9.1 Общие сведения2.9.2 Цоколевка и схемотехника2.9.3 Используемые сигналы подключения RS-485	26 26 27

2.9.4 Реализация интерфейса RS-485 в системе Linux	
2.9.5 Доступ к RS-485 из командной строки	
2.9.6 Доступ к RS-485 из С	
2.10 Интерфейс I2C	29
2.10.1 Общие сведения	29
2.10.2 Цоколевка и схемотехника	29
2.10.3 Реализация интерфейса I2С в системе Linux	
2.10.4 Доступ к I2С из командной строки	
2.10.5 Доступ к I2С из С	
2.11 Интерфейс CAN	31
2 11 1 Общие свеления	31
2.11.2 Поколевка и схемотехника	
2.11.3 Используемые сигналы подключения CAN	
2.11.4 Реализация интерфейса САМ в системе Linux	
2.11.5 Доступ к CAN из командной строки	
2.11.6 Доступ к CAN из С	
2.12 Интерфейс SPI	
2 12 1 Общие свеления	34
2.12.2 Цоколевка и схемотехника	
2.12.3 Используемые сигналы подключения SPI	
2.12.4 Доступ к SPI из командной строки	
2.12.5 Доступ к SPI из С	
2.13 Интерфейс MIPI-CSI-2	
2 13 1 Общие свеления	36
2.13.2 Цоколевка и схемотехника	
2.13.3 Используемые сигналы подключения MIPI-CSI-2	
2.13.4 Доступ к интерфейсу MIPI-CSI-2 в системе Buildroot	
2.13.5 Запуск МЭК в системе Buildroot	41
2.14 Последовательный интерфейс UART0	45
2 14 1 Общее описание	45
2.14.2 Цоколевка и схемотехника разъема UART0	
2.14.3 Используемые сигналы подключения UART0	
3 Возможные неисправности и методы их устранения	47
3.1 Особенности работы интегральной микросхемы 1892ВА018	47
3.2 Служба поддержки и полезные ссылки	
3.2.1 Канал поддержки	48

3.2.2 Полезные ссылки	48
4 Условия хранения	49
5 Гарантия производителя	50
Приложение А – Список пакетов в сборке образа системы Buildroot	51
Приложение Б – Демо приложение SmartCamApp	60

		Перечень сокращений
ВКС	_	видеоконференцсвязь
ИИ	_	искусственный интеллект
ИМС	_	интегральная микросхема
ККМ	_	контрольно-кассовая машина
МЭК	_	модуль электронной камеры
OC	_	операционная система
PЭ	_	руководство по эксплуатации
ЭД	_	эксплуатационная документация
СнК	_	система на кристалле
DSP	_	цифровой сигнальный процессор (анг. digital signal processor)
NPU	_	нейронный процессор (анг. neural processing unit)
SBC	_	одноплатный компьютер (анг. single board computer)
SBL	_	примитивный загрузчик (анг. secondary bootloader)
TOPs	_	единица скорости вычислений процессора - триллион операций
		в секунду (анг. trillion operations per second)

МАКРО ЕМС, 192289 г.Санкт-Петербург, Гаражный проезд дом 1 литера И, www.macroems.ru

Настоящее руководство по эксплуатации является руководящим документом для изучения устройства, функционирования, порядка и правил использования по назначению, при техническом обслуживании и хранении Модуля вычислительного NanoS-T МРЦН.467444.001, NanoS-T-W МРЦН.467444.001-01.

В связи с постоянным усовершенствованием изделия в его конструкцию и комплектацию могут быть внесены отдельные изменения, не влияющие на основные эксплуатационные характеристики, которые могут быть не отражены в настоящем РЭ.

Настоящее РЭ может быть уточнено и дополнено в установленном порядке.

Несоблюдение указаний по эксплуатации, техническому обслуживанию и правил техники безопасности, изложенных в настоящем Руководстве, может быть причиной возникновения ситуаций, связанных с причинением вреда здоровью.

ООО «Макро ЕМС» гарантирует соответствие качества модуля вычислительного требованиям технических условий МРЦН.467444.001ТУ при соблюдении потребителем мер безопасности, условий и правил хранения, транспортирования, эксплуатации и монтажа, установленных в ЭД на модуль.

Адрес изготовителя:

Российская Федерация, 196105, г. Санкт-Петербург,

ул. Свеаборгская, д.12, пом.3Н.

Телефон/факс: +7(812) 370-60-70

Электронная почта: <u>contract@macrogroup.ru</u>

ИНН 7810895610 КПП 781001001 Р/с 40702810206000003697

БИК 044030920 К/с 3010181000000000920

САНКТ-ПЕТЕРБУРГСКИЙ ФИЛИАЛ ПАО "ПРОМСВЯЗЬБАНК"

ОКПО 43468759 ОКВЭД 26.30, 27.90, 46.69.9, 47.78, 47.99, 72.1, 73.20.1

1 Описание и работа

1.1 Назначение изделия

Модуль вычислительный «NanoS» (далее – модуль) является законченным модулем электронным в форм-факторе Nano-ITX и нацелен для работы с классическими и нейросетевыми алгоритмами в равной степени.

Модуль базируется на СнК 1892ВА018, коммерческое название «СКИФ» от АО НПЦ «Элвис», представляющий собой четырёхъядерный процессор архитектуры Arm A53 с максимальной частотой до 2 ГГц дополненный DSP (NPU) сопроцессором Elcore-50.

Модуль работает под системами семейства Linux. На текущий момент проверена совместимость модуля с системами AltLinux, RedOS, Buildroot.

Модуль представлен в двух вариантах исполнения:

NanoS-T МРЦН.467444.001 – модуль вычислительный с термопакетом (см. Рисунок 1.1.1);

– NanoS-T-W МРЦН.467444.001-01 – модуль вычислительный с термопакетом, без интерфейсов DIO, MIPI-CSI, CAN, RS485, внешнего I2C, внешнего SPI, нет разъема аппаратного отключения звука/видео, питание только с разъема 2.1x5.5 мм (см. Рисунок 1.1.2).

Подробные технические характеристики, различия в интерфейсах исполнений приведены в соответствующем подразделе РЭ (1.2 Технические характеристики).

Рисунок 1.1.1 – Внешний вид NanoS-T МРЦН.467444.001

Рисунок 1.1.2 – Внешний вид NanoS-T-W МРЦН.467444.001-01

Модуль предназначен для использования в качестве универсального вычислителя для следующих устройств:

- рабочие станции начального уровня;
- умные камеры, камеры ВКС;
- терминалы самообслуживания;
- торговые терминалы.

Основные сферы применения модуля показаны на рисунке 1.3

самообслуживания

Рисунок 1.1.3 – Основные сферы применения модуля

1.2 Технические характеристики

Основные технические характеристики указаны в таблице 1.2

N⁰	Vapartaphotura	Значение		
п/п	Ларактеристика	NanoS-T	NanoS-T-W	
1.	Общие характеристики			
1.1	Габаритные размеры, не более, мм	120×120×37		
1.2	Процессор	СКИФ (18	392BA018)	
1.3	Напряжение электропитания, В	1	2	
1.4	Ток потребления, не более, А	1	,5	
1.5	Мощность потребления, не более, Вт	1	8	
1.6	Охлаждение	Акти	вное	
1.7	Аппаратное отключение камеры и звука	Дa	-	
1.8	Аппаратное включение/отключение	Л	[a	
1.0	электропитание	-	ι.	
Функционирование под		RedOS, AltLinux,		
1.7	операционными системами	Пользовательская Linux (Buildroot)		
1 10	Часы реального времени с элементом	Па	Ла	
1.10	резервного электропитания	дu	Да	
2.	Память			
2.1	ОЗУ (тип LPDDR4), не менее, ГБ	8 (2	x4)*	
2.2	ПЗУ (тип еММС), не менее, ГБ	10	5*	
2.3	ПЗУ (тип qSPI), не менее, МБ	1	6	
3.	Сетевые интерфейсы			
3.1	Ethernet 10/100/1000M, RJ-45, шт.	1 1		
3.2	Модуль Wi-Fi (m.2 2230 KEY-AE), шт.	1 1		
4.	Видео интерфейсы			
4.1	HDMI 1.4, шт.	1 1		
4.2	eDP, 30pin, шт.	1 -		
4.3	VGA (DB15), шт.	5), шт. 1 1		

Таблица 1.2 – Основные характеристики модуля вычислительного

Продолжение таблицы 1.2

5.	Прочие интерфейсы			
5.1	SSD накопитель (m.2 2280 KEY-M), шт.	1	1	
5.2	USB 3.0 (Туре-А), шт.	2	2	
5.3	USB 2.0 (Туре-А), шт.	2	2	
5.4	Аудио выход стерео, шт.	1	1	
	Дискретные входы и выходы			
	Универсальный вход/выход	Q		
	(TTL 3,3 В), шт.	8	-	
5.5	Оптоизолированный вход	8		
	(Opto DI), шт.	0	_	
	Оптоизолированный выход 8			
	(Opto DO), шт.	8	-	
5.6	Интерфейс подключения камеры	2		
5.0	MIPI-CSI-2, 15pin, шт.	2	-	
5.7	Внешний интерфейс I2С, шт.	1	-	
5.8	Внешний интерфейс CAN 2.0В, шт.	1	-	
5.9	Внешний интерфейс RS-485, шт.	1	-	
5.10	0 Внешний интерфейс RS-232, шт. 1 -		-	
5.11	Внешний интерфейс SPI, шт.	1	-	
	Примечание – характеристики и их	значения могут	быть изменены	
без у	ведомления			

Габаритные размеры модуля представлены на рисунке 1.21.

Рисунок 1.21 – Габаритные размеры модуля

1.3 Комплект поставки

Комплект поставки модуля приведен в таблице 1.3

Таблица 1.3 – К	Сомплект поставки
------------------------	-------------------

№ Наименование		Кол-	Примечание	
	Tuminonobumino	BO		
1	Модуль вычислительный	1	NanoS-T или NanoS-T-W	
2	Этикетка	1		
3	Руководство по эксплуатации	1	В электронном виде	
4	Блок питания 12 В, 1.5А	1	Опционально	
5	Wi-Fi модуль с антенной	1	Опционально	
6	Программное обеспечение*	-	Сборка Buildroot ** или AltLinux	
* _	- ПО представлено «как ест	гь», ис	ключительно для демонстрации	
BO3N	возможностей модуля и доступно для скачивания с сайта компании			
<u>ООО «Макро EMC»</u>				
** _	** – Описание пакетов в сборке Buildroot указано в <u>приложение A</u>			

2 Использование по назначению

2.1 Эксплуатационные ограничения

Небрежное или неумелое обращение с модулем, а также нарушение техники безопасности могут привести к несчастным случаям и вызвать выход из строя оборудования.

ЗАПРЕЩАЕТСЯ!

 Проводить настройку модуля с использованием систем отличного от рекомендуемого;

 Проводить изменение конфигурации модуля механическим путем, а также заменой компонентов;

– Использовать модуль не по прямому назначению.

2.2 Карта интерфейсов модуля

На рисунке 2.2.1 изображены расположенные на плате модуля NanoS-T интерфейсы

2.3 Подключение модуля

Для начала работы с модулем, выполните следующие действия:

– Подключите клавиатуру в USB разъем модуля;

– Подключите монитор (экран) в разъем VGA (XS4) или HDMI (XS7);

– При необходимости установите SSD накопитель, а также подключите Ethernet кабель в разъем XS1;

– Подключите блок питания в разъем XS11 (2.1x5.5 мм).

2.4 Авторизация в системе

AltLinux Логин – root Пароль – elvees

Buildroot

Логин – root Пароль – отсутсвует

2.5 Подключение к модулю по сетевому протоколу SSH

2.5.1 Подключение по SSH через командную строку Windows.

2.5.1.1 В Windows с 10-ой версии и старше по умолчанию утилита OpenSSH отключена, и чтобы приступить к выполнению команд, необходимо установить её в настройках:

– Откройте раздел «Параметры», затем раздел «Приложения»;

– Выберите подпункт «Дополнительные компоненты»;

– Найдите в списке «Клиент OpenSSH» и нажмите «Установить».

Если этой кнопки нет, значит, служба уже включена;

– После установки перезагрузите компьютер.

2.5.1.2 Откройте командную строку. Нажмите комбинацию клавиш "Win" + "R". В поисковике введите символы cmd и нажмите клавишу "Enter".

2.5.1.3 В командной строке введите команду и нажмите клавишу "Enter":

ssh username@ip-address

Вместо username введите логин администратора на модуле, по умолчанию в пользовательской Linux username - root. Вместо ip-address введите ip адрес модуля. Для того, чтобы узнать ip адрес модуля выполните последовательно пункты 2.3, 2.4. В командной строке Linux введите команду и нажмите клавишу «Enter»:

ifconfig

В выводе команды отобразятся активные сетевые интерфейсы на устройстве. В активном сетевом устройстве, например end0, в строке inet отобразится ip адрес устройства, например 192.168.98.34.

2.5.1.4 После запуска команды в консоли система запросит подтверждение подключения, необходимо ввести слово «yes» и нажать клавишу «Enter».

2.5.2 Подключение по SSH через командную строку Linux.

2.5.2.1 Установите утилиту OpenSSH с помощью менеджера пакетов apt-get. Откройте консоль программы Терминал нажав комбинацию клавиш «Ctrl» + «Alt» + «T». Наберите в консоли команду и нажмите клавишу «Enter»:

sudo apt-get install openssh-server

2.5.2.2 Устанавливаем дополнительные инструменты для работы с сетью и настройками безопасности. Запустите в консоли следующие команды:

sudo apt-get install policycoreutils sudo apt-get install net-tools 2.5.2.3 Проверяем статус SELinux, состояние должно быть disable. В открытой консоли наберите команду и нажмите клавишу «Enter»:

sestatus

Если отобразился статус enabled. Измените параметр SELINUX на SELINUX=disabled в файле конфигурации. Он расположен по следующему пути /etc/selinux/config.

2.5.2.4 Выполните аналогичные действия пунктов 2.5.1.3 - 2.5.1.4.

2.6 Интерфейс USB

2.6.1 Общие сведения

Для реализации 4 портов на модуле используется микросхема Genesys Logic GL3523-OTY30 (4-port hub). В интегральной микросхеме 1892BA018 используется интерфейс USB0.

Рисунок 2.6.1 – Структурная схема интерфейса USB

Используемые сигналы подключения:

- Сигналы USB2.0;
- Сигналы USB3.0;

– Сигнал RESET. При подаче сигнала логическая 1 на время более 20мс микросхема GL3523-OTY30 переходит в состояние сброса. После подачи сигнала логический 0 микросхема выходит из состояния сброса и инициализирует свои регистры значениями по умолчанию.

Таблица 2.6.1 – Соответствие сигнала микросхемы GL3523-OTY30 и вывода ИМС 1892BA018

Наименование	Вывод ИМС	Описание
сигнала	1892BA018	
RESET	GPIO0_PORTB_0	Сигнал сброса микросхемы GL3523-
		ОТҮЗО из ИМС 1892ВА018

2.6.2 Запуск USB-камеры на модуле

В свободный USB порт модуля подключите USB-камеру.

Убедитесь, что USB-камера определилась в системе Alt Linux, для этого выполните последовательно действия:

 Откройте Теримнал в ОС Altlinux. Нажмите комбинацию клавиш «Ctrl» + «Alt» + «T».

– Введите в консоли Терминал команду и нажмите клавишу «Enter»:

ls –l /dev/ | grep video

В результате выведутся адреса подключенной камеры, как показано на рисунке 2.6.2.

	Тер	минал - elvees@	nanoatx: /hor	ne/elvees/Рабочий стол	 Б×
Файл	Правка Ви	д Терминал В	кладки Спра	вка	
[elvee crw crw-rw crw-rw [elvee	s@nanoatx F 1 elv + 1 roo + 1 roo s@nanoatx P	Рабочий стол]\$ vees video 29, ot video 81, ot video 81, Paбочий стол]\$	ls -l /dev/ 0 июл 20 0 июл 20 1 июл 20	/ grep video 18:10 fb0 19:12 video0 19:12 video1	

Рисунок 2.6.2 – Вывод адресов подключенной USB-камеры

Для вывода видеопотока с USB-камеры наберите команду в командной строке программы Терминал и нажмите клавишу «Enter»:

ffplay /dev/video0*

* – номер видео порта модуля в каталоге устройств (/dev) может отличаться от написанного видео порта в команде (video0). В случаи если вывод не отобразился с порта video0, воспользуйтесь портом video1.

Прервать вывод видеопотока с USB-камеры можно в консоли Терминал, где была запущена команда. Нажмите комбинацию клавиш «Ctrl» + «С».

2.7 Интерфейс DIO

2.7.1 Общие сведения

Для реализации интерфейса DIO на модуле используется микросхема Kinetic Technologies KTS1620ERG-TR (24 ports IO expander). Вывод интерфейса DIO реализован разъемом XP13 - BH-40 (IDC-40MS).

Рисунок 2.7.1 – Структурная схема интерфейса DIO

2.7.2 Цоколевка и схемотехника

Рисунок 2.7.2 – Цоколевка разъема DIO

Для подключения к разъему XP13 необходимо использовать кабельный разъем IDC-40.

Номер	Наименование вывода	Описание	Тип
вывода			
1	Output1 N	Инверсный выход №1	Opto
2	Output1 P	Прямой выход №1	Opto
3	Output2 N	Инверсный выход №2	Opto
4	Output ² P	Прямой выход №2	Opto
5	Output3 N	Инверсный выход №3	Opto
6	Output3 P	Прямой выход №3	Opto
7	Output4 N	Инверсный выход №4	Opto
8	Output4 P	Прямой выход №4	Opto
9	Output5 N	Инверсный выход №5	Opto
10	Output5 P	Прямой выход №5	Opto
11	Output6 N	Инверсный выход №6	Opto
12	Output6 P	Прямой выход №6	Opto
13	Output7 N	Инверсный выход №7	Opto
14	Output7 P	Прямой выход №7	Opto
15	Output8 N	Инверсный выход №7	Opto
16	Output8 P	Прямой выход №8	Opto
17	+12B	Напряжение питание	Питание
18	+5B	Напряжение питание	Питание
19	Input1	Вход №1	Opto
20	Input2	Вход №2	Opto
21	Input3	Вход №3	Opto
22	Input4	Вход №4	Opto
23	Input5	Вход №5	Opto
24	Input6	Вход №6	Opto
25	Input7	Вход №7	Opto
26	Input8	Вход №8	Opto
27	Input COM	Общий вход	Opto
28	Input COM	Общий вход	Opto
29	Reserved	Зарезервированный вывод	-
30	+3.3B	Напряжение питания	Питание
31	Ground	Земля	Земля
32	Ground	Земля	Земля
33	DIO1	Цифровой вход/выход №1	TTL 3,3 B
34	DIO2	Цифровой вход/выход №2	TTL 3,3 B
35	DIO3	Цифровой вход/выход №3	TTL 3,3 B
36	DIO4	Цифровой вход/выход №4	TTL 3,3 B
37			
51	DIO5	Цифровой вход/выход №5	TTL 3,3 B
38	DIO5 DIO6	Цифровой вход/выход №5 Цифровой вход/выход №6	TTL 3,3 B TTL 3,3 B
38 39	DIO5 DIO6 DIO7	Цифровой вход/выход №5 Цифровой вход/выход №6 Цифровой вход/выход №7	TTL 3,3 B TTL 3,3 B TTL 3,3 B

Таблица 2.7.1 – Цоколевка разъема XP13

Схема подключения выходов Output_P/N

Ограничения выходных сигналов: Напряжение......24В DC Ток......50mA DC

Схема подключения входов Input

Ограничения входных сигналов: Напряжение......24В DC Ток......3-10mA DC

Схема подключения входов/выходов DIO

Таблица 2.7.2 – Соответствие выходов/входов микросхемы KTS1620 к внешним сигналам, поступающим/приходящим на выводы интерфейса DIO

Наим.	Внешний	Наим. вывода	Внешний	Наим. вывода	Внешний
вывода	сигнал	KTS1620	сигнал	KTS1620	сигнал
KTS1620					
P0[0]	Input5	P1[0]	Output5	P2[0]	DIO2
P0[1]	Input4	P1[1]	Output6	P2[1]	DIO1
P0[2]	Input2	P1[2]	Output3	P2[2]	DIO4
P0[3]	Output8	P1[3]	Output4	P2[3]	DIO3
P0[4]	Input6	P1[4]	Output1	P2[4]	DIO6
P0[5]	Input3	P1[5]	Output2	P2[5]	DIO5
P0[6]	Input1	P1[6]	Input7	P2[6]	DIO8
P0[6]	Output7	P1[6]	Input8	P2[6]	DIO7

2.7.3 Используемые сигналы подключения DIO

Микросхема KTS1620 управляется по шине I2C (i2c_0). Скорость шины I2C 100/400/1000кГц. Микросхема KTS1620 имеет 7-битный адрес 22h.

Сигнал RESET. При подаче сигнала логический 0 на время более 20мс микросхема KTS1620 переходит в состояние сброса. После подачи сигнала логическая 1 микросхема KTS1620 выходит из состояния сброса и инициализирует свои регистры значениями по умолчанию.

Сигнал INT (сигнал прерывания). При возникновении «событий» в микросхеме KTS1620 данный сигнал переходит в активное состояние: логический 0. Данный механизм требует настройки в KTS1620 в соответствии с описанием.

Таблица 2.7.3 – Соответствия сигналов микросхемы KTS1620 к выводам ИМС 1892BA018

Наименование	Вывод ИМС	Описание
сигнала	1892BA018	
RESET	GPIO0_PORTD_6	Сигнал сброса из ИМС
		1892BA018
INT	GPIO1_PORTA_6	Сигнал прерывания в ИМС
		1892BA018

Примечание – прерывание выводов интерфейса DIO не реализовано на аппаратном уровне.

2.7.4 Реализация DIO в системе Linux

2.7.4.1 Активация драйвера

В системе Linux реализован драйвер drivers/gpio/gpio-kts1620.c, модуль драйвера находится в /*lib/modules/5.10.179/kernel/drivers/gpio/gpio-kts1620.ko*.

Драйвер активирован на модуле. В описание дерева устройства (dts) драйвер прописан следующим образом:

&i2c0 { gpio2: gpio@0x22 { compatible = "kinetic,kts1620x-gpio"; reg = <0x22>; 2.7.4.2 Доступ к интерфейсу DIO из командной строки

Необходимо выполнить экспорт ножек микросхемы KTS1620 в Linux для передачи/приема через выводы интерфейса DIO из командной строки или скрипта shell. Согласно приведенной таблицы в разделе схематики, каждая ножка микросхемы получает/передает внешний сигнал через выводы интерфейса DIO.

Таблица 2.7.4 – Соответствия внешних сигналов интерфейса DIO и адреса выводов микросхемы KTS1620 экспортированного в системе Linux

Внешний	Адрес	Внешний	Адрес	Внешний	Адрес
сигнал, с	вывода	сигнал, на	вывода	сигнал, с/на	вывода
выводов	микросхе	выводы Opto	микросхе	выводы	микросхе
Opto DI	мы в	DO	мы в	GPIO	мы в
	Linux		Linux		Linux
Input1	430	Output1	436	DIO1	441
Input2	426	Output2	437	DIO2	440
Input3	429	Output3	434	DIO3	443
Input4	425	Output4	435	DIO4	442
Input5	424	Output5	432	DIO5	445
Input6	428	Output6	433	DIO6	444
Input7	438	Output7	431	DIO7	447
Input8	439	Output8	437	DIO8	446

2.7.4.3 Пример использования внешнего сигнала

В качестве примера используется внешний сигнал, поступающий с вывода интерфейса opto DI (Input5).

Для экспорта данного вывода в командной строке Linux наберите команды ниже. Каждая команда должна заканчиваться нажатием клавиши «Enter».

export PIN0=424
echo \$PIN0 >/sys/class/gpio/export

Необходимо настроить направление вывода интерфейса. По умолчанию он установлен на вход. Для того чтобы задать направление вывода воспользуйтесь следующими командами:

Направление на выход:

echo out >/sys/class/gpio/gpio\$PIN0/direction

Направление на вход:

echo in >/sys/class/gpio/gpio\$PIN0/direction

Чтобы прочитать значение вывода интерфейса opto DI воспользуйтесь командой cat, представленной ниже:

cat /sys/class/gpio/gpio\$PIN0/value

Если вывод микросхемы выставлен как выход, то установить значение «1» на нем можно командой:

echo 1 >/sys/class/gpio/gpio\$PIN0/value

Или значение «0»:

echo 0 >/sys/class/gpio/gpio\$PIN0/value

2.7.5 Доступ к интерфейсу DIO из С

Доступ осуществляется через new user-space GPIO API, которое использует *character device /dev/gpiochipX* и системные вызовы *open(), close(), ioctl(), poll(), read(), write()*.

Доступ к выводам интерфейса DIO можно получить с помощью библиотеки libgpiod. Данная библиотека предоставляет шесть инструментов командной строки: gpiodetect - список всех присутствующих в системе gpiochips, их названия, метки и количество линий GPIO;

gpioinfo - список всех линий указанных gpiochips, их имена, потребители, направление, активное состояние и дополнительные флаги;

gpioget - чтение значений указанных линий GPIO;

gpioset - установить значения указанных линий GPIO;

gpiofind - найти имя gpiochip и смещение строки по имени строки;

gpiomon - ждать событий на линиях GPIO, указывать какие события смотреть, сколько событий нужно обработать перед выходом или если события должно быть сообщено в консоль.

2.8 Интерфейс RS-232

2.8.1 Общие сведения

В ИМС 1892ВА018 используется интерфейс UART3 (COM3).

Рисунок 2.8.1 – Структурная схема интерфейса RS-232

Параметры интерфейса:

- Скорость передачи данных от 9600 Бит/с до 115200 Бит/с
- 8 бит данных.
- 1 стоп бит.
- Контроль четности не поддерживается.
- Управление потоком RTS, CTS, DTR, DSR, DCD, RI.
- Соответствует требованиям стандарта EIA/TIA-232-F

2.8.2 Цоколевка и схемотехника

Для подключения сигналов RS-232 к плате используется разъем XP20. Тип разъема XP20 – DB9 male. Для подключения к разъему XP20 используйте кабельный разъем DB9 female.

Таблица 2.8.1 – Соответствия сигналов интерфейса RS-232 и выводов ИМС 1892ВА018

Номер	Вывод интерфейса	Порты вывода	Описание
вывода	RS-232	ИМС 1892ВА018	
1	DCD	GPIO0_PORTA_4	Сигнал DCD в ИМС
			1892BA018
2	SOUT	GPIO0_PORTB_1	Выход данных ТХ из ИМС
			1892BA018
3	SIN	GPIO0_PORTB_0	Вход данных RX в ИМС
			1892BA018
4	DTR	GPIO0_PORTA_6	Сигнал DTR из ИМС
			1892BA018
6	DSR	GPIO0_PORTA_3	Сигнал DSR в ИМС
			1892BA018
7	RTS	GPIO0_PORTA_7	Сигнал RTS из ИМС
			1892BA018
8	CTS	GPIO0_PORTA_2	Сигнал CTS в ИМС
			1892BA018
9	RI	GPIO0_PORTA_5	Сигнал RI в ИМС
			1892BA018

2.8.4 Доступ к RS-232 из командной строки

Интерфейс RS-232 является стандартным серийным портом. В системе Linux данный порт соответствует файл-устройство телетайп. RS-232 располагается в каталоге устройств /dev/ с именем ttyS3.

Пример отправки строки на скорости 115200 из shell:

stty -F /dev/ttyS3 115200 raw
echo -e "hello world\r\n" >/dev/ttyS3

Пример приема строки из shell:

cat /dev/ttyS3

2.8.5 Доступ к RS-232 из С

Для написания программы на языке С связанной с интерфейсом RS-232 достаточно стандартной библиотеки языка С (libc). В данной библиотеке находятся заголовочные файлы: fcntl.h, termios.h необходимые для работы с данным интерфейсом.

2.9 Интерфейс RS-485

2.9.1 Общие сведения

Для реализации интерфейса RS-485 на модуле используется микросхема Миландр К5559ИН10БSI (RS-485 driver). Нагрузочный резистор 120 Ом установлен на плате.

Рисунок 2.9.1 – Структурная схема интерфейса RS-485

Параметры интерфейса соответствуют требованиям стандарта EIA/TIA-RS-485.

2.9.2 Цоколевка и схемотехника

Для подключения сигналов RS-485 к плате используется разъем XP11. Тип разъема XP11 - SCT1251WV-3P (Scondar). Для подключения к разъему XP11 необходимо использовать кабельный разъем SCT1251MH-3P (Scondar). Для подключения нагрузочного резистора 120 Ом необходимо установить джампер MJ-O-6 (2,54мм) в разъем XP10.

Рисунок 2.9.2 – Цоколевка разъема RS-485

	p == = = = = = = = = = = = = = = = =	
Номер вывода	Наименование вывода	Описание
1	A	Прямой вход/выход
2	GND	Земля
3	В	Инверсный вход/выход

Таблица 2.9.1 – Выводы разъема интерфейса RS-485

2.9.3 Используемые сигналы подключения RS-485

Сигнал DE (активный высокий логический уровень) разрешает работу микросхемы Миландр К5559ИН10БSI на передачу сигналов в прямой выход А и инверсный выход В с ИМС 1892ВА018. При подаче сигнала в активное состояние логическую «1» на время более 0,7 мкс микросхема Миландр К5559ИН10БSI переходит в режим передатчика.

Сигнал RE (активный низкий логический уровень) разрешает работу микросхемы Миландр К5559ИН10БSI на прием сигналов с прямого входа А и инверсного входа В с ИМС 1892ВА018. При подаче сигнала в логический «0» на время более 0,7 мкс микросхема Миландр К5559ИН10БSI переход в режим приемника.

Сигнал SIN поступает на вход в ИМС 1892ВА018 с выхода RO микросхемы Миландр К5559ИН10БSI в режиме приемника.

Сигнал SOUT поступает на вход DI в микросхеме Миландр К5559ИН10БSI из ИМС 1892ВА018 в режиме передатчика.

Таблица 2.9.2 – Соответствия сигналов интерфейса RS-485 к выводам ИМС 1892ВА018

Наименование	Порты вывода	Описание
сигнала	ИМС 1892ВА018	
DE	GPIO0_PORTB_2	Выход управления микросхемы из
		ИМС 1892ВА018. Разрешение входа
		микросхемы в режиме передатчика.
RE	GPIO0_PORTB_3	Выход управления микросхемы из
		ИМС 1892ВА018. Разрешение выхода
		микросхемы в режиме приемника.
SIN	GPIO0_PORTB_7	Вход данных в ИМС 1892ВА018
SOUT	GPIO0_PORTD_0	Выход данных из ИМС 1892ВА018

2.9.4 Реализация интерфейса RS-485 в системе Linux

В системе Linux реализован драйвер. Драйвер использует стандартный API ядра Linux для интерфейса RS485. Исходный код драйвера расположен *drivers/tty/serial/8250/8250_dw.c.* Драйвер собран монолитно в ядре Linux и не требует дополнительной загрузки.

2.9.5 Доступ к RS-485 из командной строки

Интерфейс RS-485 является стандартным серийным портом. В системе Linux данный порт соответствует файл-устройство телетайп. RS-485 располагается в каталоге устройств /dev/ с именем ttyS2.

Пример отправки строки на скорости 115200 из shell:

stty -F /dev/ttyS2 115200 raw
echo -e "hello world\r\n" >/dev/ttyS2

Пример приема строки из shell:

cat /dev/ttyS2

2.9.6 Доступ к RS-485 из С

Для написания программы на языке С связанной с интерфейсом RS-485 достаточно стандартной библиотеки языка С (libc). В данной библиотеке

находятся заголовочные файлы: linux/serial.h, sys/ioctl.h необходимые для работы с данным интерфейсом.

2.10 Интерфейс I2C

2.10.1 Общие сведения

Для реализации внешнего интерфейса I2C на модуле используется прямое подключение к ИМС 1892ВА018 через конвертеры уровня 1,8В-3,3В. На плате установлены pull-up резисторы номиналом 2,49 кОм.

Рисунок 2.10.1 – Структурная схема интерфейса I2C

Параметры интерфейса:

- Скорость передачи данных от 10 кб/с до 500 кб/с;
- 8 бит данных.

2.10.2 Цоколевка и схемотехника

Для подключения устройства по интерфейсу I2C используется разъем XP8. Тип используемого разъема - SCT1251WV-4P (Scondar). Для подключения к разъему XP8 необходимо использовать кабельный разъем SCT1251MH-4P (Scondar).

Рисунок 2.10.2 – Цоколёвка разъема I2C

ruomidu 2.10.1 - Bbbodbi pusbeniu interpretieu 120			
Номер вывода	Наименование вывода	Описание	
1	3V3	Питание	
2	SCL	Линия тактирования	
3	SDA	Линия данных	
4	GND	Земля	

Таблица 2.10.1 – Выводы разъема интерфейса I2C

Рисунок 2.10.3 – Схема подключения интерфейса I2С

2.10.3 Реализация интерфейса I2C в системе Linux

Драйвер использует стандартный АРІ ядра Linux шины I2C (i2c_3).

2.10.4 Доступ к I2С из командной строки

Шина I2C располагается в каталоге устройств /dev/ с именем i2c-3. Для того чтобы записать или прочитать данные с шины i2c можно воспользоваться инструментами командной строки *i2cset* и *i2cget*.

Пример для записи данных на устройство по шине i2c-3 из shell:

i2cset -y 3 0x20 0x01

где -у – отключение интерактивного режима;

3 – номер шины i2с-3;

0х20 – адрес устройства, инициализированного на шине i2с-3;

0x01 – данные записанные в адрес устройства 0x20.

Пример чтения данных с устройства по шине i2c-3 из shell:

i2cget -y 3 0x20

где -у – отключение интерактивного режима;

3 – номер шины i2с-3;

0x20 – адрес устройства, инициализированного на шине i2c-3.

2.10.5 Доступ к I2С из С

Для написания программы на языке С связанной с интерфейсом I2С достаточно стандартной библиотеки языка С (libc). В данной библиотеке находятся заголовочные файлы: linux/i2c.h, linux/i2c-dev.h, sys/ioctl.h необходимые для работы с данным интерфейсом.

2.11 Интерфейс CAN

2.11.1 Общие сведения

Для реализации интерфейса CAN на модуле используется микросхема Mornsun SCM3425ASA.

В ИМС 1892ВА018 используется интерфейс MFBSP0.

Рисунок 2.11.1 – Структурная схема интерфейса CAN

2.11.2 Цоколевка и схемотехника

Для подключения устройства по интерфейсу CAN используется разъем XP7. Тип используемого разъема - SCT1251WV-3P (Scondar). Для подключения к разъему XP7 необходимо использовать кабельный разъем SCT1251MH-3P (Scondar). Для подключения нагрузочного резистора 120 Ом необходимо установить джампер MJ-O-6 (2,54мм) в разъем XP6.

Рисунок 2.11.2 – Цоколевка разъема CAN

Таблица 2.11.1 – Выводы разъема интерфейса RS-485

Номер вывода	Наименование вывода	Описание
1	CAN_L	Линия низкого напряжения
2	GND	Земля
3	CAN_H	Линия высокого напряжения

2.11.3 Используемые сигналы подключения CAN

Таблица 2.11.2 – Соответствие сигналов интерфейса САN и выводов ИМС 1892ВА018

Наименование	Порты вывода	Описание
сигнала	ИМС 1892ВА018	
CAN_RX	MFBSP0_LDAT6	Вход данных в микросхему ИМС
		1892BA018
CAN_TX	MFBSP0_LDAT7	Выход данных из микросхемы
		ИМС 1892ВА018

2.11.4 Реализация интерфейса САN в системе Linux

Драйвер использует стандартные API ядра Linux шины CAN (can0).

2.11.5 Доступ к CAN из командной строки

Шина CAN доступна в системе как сетевой интерфейс can0. Для того чтобы записать или прочитать данные с шины can можно воспользоваться утилитами *cansend* и *candump*. Если по каким-то причинам их нет, можно установить пакет *can-utils*. Пример настройки интерфейса:

Для начала выключите интерфейс. Для этого в командной строке наберите команду и нажмите клавишу «Enter»:

ip link set dev can0 down

Установите скорость шины равную 125кб/с. Для этого в командной строке наберите команду и нажмите клавишу «Enter»:

ip link set can0 type can bitrate 125000

Включите интерфейс. Для этого в командной строке наберите команду и нажмите клавишу «Enter»:

ip link set dev can0 up

Проверьте, что параметры шины CAN установились в системе Linux и в рабочем состоянии. Для этого в командной строке наберите команду и нажмите клавишу «Enter»:

ip -details link show can0

В случае успешной установки параметров, шина отобразится с установленными параметрами. В противном случае отобразится вывод с ошибками.

Чтобы отправить по шине с именем «can0» данные – ABCDEF99 по адресу 123, в командной строке наберите команду и нажмите клавишу «Enter»:

cansend can0 123#ABCDEF99

Чтобы прочитать данные по шине «can0», в командной строке наберите команду и нажмите клавишу «Enter»:

candump can0

2.11.6 Доступ к САМ из С

Для написания программы на языке С связанной с интерфейсом CAN достаточно стандартной библиотеки языка С (libc). В данной библиотеке находятся заголовочные файлы: linux/types.h, linux/socket.h необходимые для работы с данным интерфейсом.

2.12 Интерфейс SPI

2.12.1 Общие сведения

Для реализации интерфейса SPI на модуле используется прямое подключение к ИМС 1892BA018 через конвертеры уровня 1,8B-3,3B.

Рисунок 2.12.1 – Структурная схема интерфейса SPI

2.12.2 Цоколевка и схемотехника

Для подключения устройства по интерфейсу SPI используется разъем XP5. Тип используемого разъема - SCT1251WV-6P (Scondar). Для подключения к разъему XP5 необходимо использовать кабельный разъем SCT1251MH-6P (Scondar).

Рисунок 2.12.2 – Цоколевка разъема SPI

Таблица 2.12.1 – Выводы разъема интерфейса SPI Номер вывода Наименование Описание

	вывода	
1	3V3	Питание
2	CS	Сигнальная линия выбор ведомого
3	SCLK	Линия тактирования
4	MOSI	Сигнальная линия выхода ведущего
		устройства, вход ведомого устройства
5	MISO	Сигнальная линия входа ведущего
		устройства, выход ведомого устройства
6	GND	Земля

2.12.3 Используемые сигналы подключения SPI

Таблица 2.12.1 – Соответствия сигналов интерфейса SPI и выводов ИМС 1892ВА018

Наименование	Порты вывода ИМС	Описание
сигнала	1892BA018	
CS	GPIO0_PORTC_5	Выход данных ТХ из ИМС
		1892BA018
MOSI	GPIO0_PORTC_1	Выход данных из ИМС
		1892BA018
MISO	GPIO0_PORTC_2	Вход данных в ИМС 1892ВА018

2.12.4 Доступ к SPI из командной строки

Интерфейс SPI располагается в каталоге устройств /dev/ с именем mtd1. Для того чтобы записать или прочитать данные по данному интерфейсу можно воспользоваться утилитой mtd-utils в которой есть команды *mtd_debug write* и *mtb_debug read*.

Чтобы удостоверится что устройство подключенное по SPI инициализировалась в системе следует набрать команду в командной строке и нажать клавишу «Enter»:

mtdinfo /dev/mtd1

В результате успешной инициализации отобразится вывод с именем устройства, с типом памяти, размером и к допуску записи в память.

Чтобы отправить данные 0x01 по интерфейсу SPI в адрес 0x0000000 набрать команду в командной строке и нажать клавишу «Enter»:

Чтобы прочитать значение по адресу 0x0000000 в командной строке набрать команду и нажать клавишу «Enter»:

mtd debug read /dev/mtd1 0

2.12.5 Доступ к SPI из С

Для написания программы на языке С связанной с интерфейсом SPI достаточно стандартной библиотеки языка С (libc). В данной библиотеке находятся заголовочные файлы: linux/serial.h, sys/ioctl.h необходимые для работы с данным интерфейсом.

2.13 Интерфейс MIPI-CSI-2

2.13.1 Общие сведения

Для реализации интерфейса MIPI-CSI-2 используется прямое подключение к MIPI-CSI линиям ИМС 1892BA018. В интегральной микросхеме используются интерфейсы MIPI CSI0 и MIPI CSI1.

Рисунок 2.13.1 – Структурная схема интерфейса MIPI-CSI-2

2.13.2 Цоколевка и схемотехника

Для подключения МЭК по интерфейсу MIPI-CSI-2 используется разъемы XS9 (MIPI_CSI0) и XS10 (MIPI_CSI1). Тип используемого разъема – FCZ-022-VC50-99/RT (E-tec Interconnect). Для подключения к разъему XS9-

XS10 необходимо использовать стандартный «прямой» 22-контактный FFCшлейф (тип A) с шагом контактов 0,5 мм.

Рисунок 2.13.2 – Цоколевка разъемов MIPI-CSI-2

Номер	Наименование	Описание
вывода	сигнала	
1	GND	Земля
2	CAM_D0_N	Линия видеоданных 0 отрицательный вывод
3	CAM_D0_P	Линия видеоданных 0 положительный вывод
4	GND	Земля
5	CAM_D1_N	Линия видеоданных 1 отрицательный вывод
6	CAM_D1_P	Линия видеоданных 1 положительный вывод
7	GND	Земля
8	CAM_CK_N	Линия тактового сигнала отрицательный
		вывод
9	CAM_CK_P	Линия тактового сигнала положительный
		вывод
10	GND	Земля
11	CAM_D2_N	Линия видеоданных 2 отрицательный вывод
12	CAM_D2_P	Линия видеоданных 2 положительный вывод
13	GND	Земля
14	CAM_D3_N	Линия видеоданных 3 отрицательный вывод
15	CAM_D3_P	Линия видеоданных 3 положительный вывод
16	GND	Земля
17	PWR_EN	Сигнальная линия включения/выключения
		питания камеры
18	LED/XCLK	-
19	GND	Земля
20	CAM_SCL	Линия тактирования по шине I2C
21	CAM_SDA	Линия данных по шине I2C
22	CAM_3V3	Линия питание сенсора +3,3 В

Таблица 2.13.1 – Выводы разъемов интерфейса MIPI-CSI-2

Рисунок 2.13.3 – Схема подключения шины управления I2С для MIPI-CSI-2

2.13.3 Используемые сигналы подключения MIPI-CSI-2

Шина управления МЭК, подключенного к разъему MIPI_CSI0 управляется по шине I2C (i2c_1). Скорость шины I2C зависит от подключенного МЭК. Уровень сигнала по напряжению составляет 3,3 В. На шине управления установлены подтягивающие резисторы 2,49 кОм.

Сигнал MIPI0_PWRen - сигнал включения МЭК, подключенного к разъему MIPI_CSI0. При подаче сигнала логический «0» из ИМС 1892ВА018 МЭК включается. При подаче сигнала логическая «1» МЭК выключается. Уровень напряжения сигнала MIPI0_PWRen составляет 3,3 В. На выводе сигнальной линии установлен подтягивающий резистор 2,49 кОм.

Шина управления МЭК, подключенного к разъему MIPI_CSI1 управляется по шине I2C (i2c_2). Скорость шины I2C зависит от подключенного МЭК. Уровень сигнала по напряжению составляет 3,3 В. На шине управления установлены подтягивающие резисторы 2,49 кОм.

Сигнал MIPI1_PWRen - сигнал включения МЭК, подключенного к разъему MIPI_CSI1. При подаче сигнала логический «0» из ИМС 1892ВА018 МЭК включается. При подаче сигнала логическая «1» МЭК выключается.

Уровень напряжения сигнала MIPI1_PWRen составляет 3,3 В. На выводе сигнальной линии установлен подтягивающий резистор 2,49 кОм.

Таблица 2.13.2 – Соответствия сигналов интерфейса MIPI-CSI-2 и выводов ИМС 1892ВА018

Наименование	Порты вывода	Описание
сигнала	процессора ИМС	
	1892BA018	
MIPI0_PWRen	GPIO0_PORTC_1	Сигнал включения МЭК из ИМС
		1892ВА018, подключенного к
		разъему «MIPI_CSI0» (XS9).
MIPI1_PWRen	GPIO0_PORTC_6	Сигнал включения МЭК из ИМС
		1892ВА018, подключенного к
		разъему «MIPI_CSI0» (XS10).

2.13.4 Доступ к интерфейсу MIPI-CSI-2 в системе Buildroot

В системе Buildroot реализована передача видео с МЭК с помощью мультимедийного фреймворка GStreamer. GStreamer поддерживает следующие аппаратные блоки:

– VPU ARM Mail-V61 (Video Processing Unit, видеопроцессор);

– ISP Felix v2505 (Image Signal Processor, процессор обработки изображений);

– GPU PowerVR Graphics Series8XE (Graphics Processing Unit, графический ускоритель).

Захват и обработка видео с МЭК с использованием ISP поддерживается плагином gst-felix для пакета GStreamer. Данным плагином поддерживается элемент felixsrc – захват видео с МЭК. Элементом felixsrc не поддерживается работа двух МЭК одновременно.

Конфигурационный файл взаимодействия модуля с МЭК располагается в файловой системе модуля по следующему пути /etc/felix/boardcfd/default.cfg. Перечень возможных установочных файлов (setup-file) в зависимости от используемого МЭК расположены в директории /etc/felix/. Таблица 2.13.3 – Расположение установочных файлов поддерживаемых МЭК в системе Buildroot, разъем подключения на модуле и рекомендованные режимы работы МЭК

Молель М'ЭК	Расположение установочного	Разъем	Режимы
		1 dobem	
	файла	модуля	работы
			МЭК*
DS-CIMX327-	/etc/felix/imx327/imx327.cfg	MIPI_CSI0	0, 1
22		(XS9)	
DS-CIMX335-	/etc/felix/imx335/imx335.cfg	MIPI_CSI0	5, 6, 7, 8
22	/etc/felix/imx335/imx335-	(XS9)	
	noir.cfg		
DS-CIMX415-	/etc/felix/imx415/imx415.cfg	MIPI_CSI0	0, 4, 5, 7, 8,
22		(XS9)	9, 11, 12
DS-CIMX662-	/etc/felix/imx662/imx662.cfg	MIPI_CSI0	0, 1, 2
22	/etc/felix/imx662/imx662-	(XS9)	
	noir.cfg		
* - данные режимы поддерживают вывод изображения на экран с			
разрешением Full HD с максимальным количеством кадров 30 (FPS).			

Порядковый номер режима работы МЭК взят из утилиты felix-sensor-test.

2.13.5 Запуск МЭК в системе Buildroot

Мы рекомендуем использовать МЭК серии: DS-CIMX335-22, DS-CIMX415-22, DS-CIMX327-22, DS-CIMX662-22. Рекомендованные МЭК могут быть подключены только к разъему «MIPI_CSI0» (XS9 на плате модуля).

Для начала работы с МЭК выполните следующие действия:

1) Подключите МЭК в разъем модуля «MIPI_CSI0» (XS9) через через стандартный «прямой» 22-контактный FFC-шлейф (тип А) с шагом контактов 0,5 мм.

Выполните последовательно действия пункта 2.3 Подключение модуля.

3) Войдите в среду Linux. Наберите в командной строке логин **root** и нажмите клавишу «Enter».

Убедитесь, что МЭК инициализирован в системе. Запустите утилиту felix-sensor-test набрав команду в командной строке и нажав клавишу «Enter»:

felix-sensor-test

Запущенная утилита проверит подключение всех поддерживаемых платформой МЭК и выведет их статус. Если МЭК правильно определен системой и доступен для видеозахвата ответом на команду будут следующие строки:

•••

18: IMX335 (v0x8806 imager 0)

mode 0: 2592x 1944 @60.00 10bit (total 275x4500 mipi_lane=4) exposure=(3..1000000) flipping=horizontal|vertical

pixel rate 37.1250 Mpx/s, bit rate 92.8125 Mbits/s (per mipi lane)

mode 1: 2592x 1944 @30.00 12bit (total 550x4500 mipi_lane=4) exposure=(7..1000000) flipping=horizontal|vertical

pixel rate 37.1250 Mpx/s, bit rate 111.3750 Mbits/s (per mipi lane)

•••

В качестве примера приведена часть вывода утилиты. Цифра пред словом mode является порядковым номером режима работы МЭК.

В случае, если МЭК не определен системой, то для него ответом на команду felix-sensor-test будет следующим:

X: IMX335 – no modes display available

Запустите захват видео с МЭК.

Общий вид команды запуска видеотрансляции с выводом изображения на монитор с разрешением Full HD через интерфейс HDMI с постоянной частотой кадров:

gst-launch-1.0 felixsrc setup-file=<setup-file> sensor=<sensor> sensormode=<sensor-mode> exposure-auto=true exposure-auto-priority=1 awbenable=true awb-algorithm=pid awb-mode=high-lum ! queue max-sizebuffers=1 ! video/x-raw,format=BGR, width=1920,height=1080 ! fpsdisplaysink video-sink="kmssink driver-name=mali-dp max-lateness=-1 forcemodesetting=true" -v 2>&1

Пример запуска видеотрансляции с МЭК DS-CIMX662-22 с выводом изображения на монитор с разрешением Full HD через интерфейс HDMI:

gst-launch-1.0 felixsrc setup-file=/etc/felix/imx662/imx662.cfg sensor=IMX662 sensor-mode=0 *exposure-auto=true* exposure-auto-max*time=60000* exposure-auto-min-time=10 *exposure-auto-priority=1* awbenable=true awb-algorithm=pid awb-mode=high-lum preeng-buffers=1 use*dmabuf=true alloc-buffers*=6 ! video/x*restart-on-error=true* raw,format=BGR,width=1920,height=1080 ! queue ! fpsdisplaysink videosink="kmssink driver-name=mali-dp max-lateness=-1 force-modesetting=true" -v 2>&1

Чтобы прервать видеотрансляцию нажмите комбинацию клавиш «Ctrl» + «С». После остановки команды в Терминале выведется FPS видеотрансляции (количество потерянных кадров, моментальное и среднее значения).

Для вывода свойств элемента felixsrc воспользуйтесь описанной ниже командой. У данных свойств будет описан тип значения, значение, установленное по умолчанию и диапазон возможных принимаемых значений.

gst-inspect-1.0 felixsrc

Значение максимальной и минимальной выдержки (exposure-auto-maxtime, exposure-auto-min-time) для каждого МЭК свое. Желаемое максимальное время выдержки для МЭК можно рассчитать по формуле:

exposure-auto-max-time=1000000 / желаемое_FPS

Параметр sensor-mode должен соответствовать разрешению устройства видеовывода. Для вывода доступных режимов устройства видеовывода можно воспользоваться командой:

modetest -M mali-dp -c

Для принудительного масштабирования захватываемого видео под устройство видеовывода можно задать разрешение видеопотока для вывода, например: video/x-raw,format=BGRx,width=1920,height=1080

Общий вид команды запуска потоковой передачи видео по протоколу RTSP:

"felixsrc setup-file=<setup-file> sensor=<sensor> gst-rtsp-test-launch *alloc-buffers=10 buf-mode=query sensor-mode*=*sensor-mode* exposure*auto=true awb-enable=true awb-algorithm=pid awb-mode=high-lum ! queue maxsize-buffers=1 ! video/x-raw,format=NV12 ! omxh264enc control-rate=constant target-bitrate=10000000 ! rtph264pay name=pay0 pt=96*"

Пример запуска сенсора DS-CIMX662-22 с потоковой передачей видео по протоколу RTSP:

"felixsrc setup-file= /etc/felix/imx662/imx662.cfg gst-rtsp-test-launch sensor=IMX662 sensor-mode=0 alloc-buffers=10 buf-mode=query exposure*auto=true awb-enable=true awb-algorithm=pid awb-mode=high-lum ! queue maxsize-buffers=1 ! video/x-raw,format=NV12 ! omxh264enc control-rate=constant target-bitrate=10000000 ! rtph264pay name=pay0 pt=96"*

В консоль процессорного модуля будет выведено сообщение:

stream ready at rtsp://127.0.0.1:8554/test

Для приёма и вывода видео с сенсора на ПК подайте в консоли Терминал команду ffplay в формате:

ffplay rtsp://<module-address>:8554/test

где <module-address> - это IP-адрес процессорного модуля.

44

2.14.1 Общее описание

Для реализации последовательного интерфейса на модуле используется прямое подключение к ИМС 1892ВА018 через конвертеры уровня 1,8В-3,3В. Для подключения необходимо использовать преобразователь UART-USB.

Рисунок 2.14.1 – Структурная схема интерфейса UART0

2.14.2 Цоколевка и схемотехника разъема UART0

Для подключения сигналов UART0 к плате используется разъем XP4. Тип разъема XP2 – SCT1251WV-3P (Scondar). Для подключения к разъему XP4 необходимо использовать кабельный разъем SCT1251MH-3P (Scondar).

Рисунок 2.14.2 – Цоколевка разъема UART0

Таблица 2.14.1 – Цоколевка разъема ХР5

Номер вывода	Наименование вывода
1	SOUT
2	GND
3	SIN

2.14.3 Используемые сигналы подключения UART0

Таблица 2.14.2 – Соответствия сигналов интерфейса UART0 и выводов ИМС 1892ВА018

Номер	Вывод	Порты вывода ИМС	Описание
вывода	интерфейса	1892BA018	
	UART0		
1	SOUT	GPIO1 PORTB 6	Выход данных ТХ из ИМС
			1892BA018
3	SIN	GPIO1_PORTB_7	Вход данных RX в ИМС
			1892BA018

3 Возможные неисправности и методы их устранения

3.1 Особенности работы интегральной микросхемы 1892ВА018

Работа интерфейсов модуля базируется на работе микросхемы 1892ВА018 СнК «СКИФ». В данной версии модуля используются инженерные образцы данной микросхемы, которые обуславливают особенности его работы. Специалисты АО НПЦ «Элвис» планируют исправить аппаратную часть микросхемы в коммерческих версиях. В таблице 3 представлены особенности работы модуля (неисправности) на инженерных образцах микросхемы и способы обхода данных особенностей.

Неисправность	Методы устранения
HDMI 1.4	Решение 1:
Срыв	<u>IIO Alt Linux</u>
синхронизации, в	Запустить скрипт с рабочего стола «HDMI turning».
результате чего	В открывшейся консоли терминала с вопросом
возникают	хорошего изображения картинки, нажимать
искажение или	клавишу «n» (нет), пока не появится хорошее
мерцание экрана	изображение. Когда появится хорошее изображение
	на экране монитора, нажать клавишу «у» (да).
	<u>IIO Buildroot</u>
	Запустить скрипт «mcom03-hdmi-setup.sh»:
	Набрать в командной строке системы
	Buildroot ./mcom03-hdmi-setup.sh и нажав клавишу
	«Enter».
	В результате запуска скрипта на экране монитора
	появится изображение (зелено-синее) для проверки
	стабильности вывода по интерфейсу. Нажимать
	клавишу «n», пока не появится хорошее
	изображение на экране монитора. Когда появится
	хорошее изображение на экране монитора, нажать
	клавишу «у».
	Решение 2:
	Перезапустите модуль

Таблица 3.1 – Неисправности и методы их решений

3.2 Служба поддержки и полезные ссылки

3.2.1 Канал поддержки

Nano_Pico_ITX_support - ODM@macrogroup.ru

Примечание – Для добавления в канал поддержки, пожалуйста, сообщите вашему менеджеру (от Макро Групп) ваш домен почты.

3.2.2 Полезные ссылки

- <u>Комплект для разработки ПО</u>
- <u>Готовые сборки образов ОС Linux</u>
- Архив с готовыми образами пользовательской Linux и

инструкции по сборке и установке собственного образа среды Linux

Информация по установке и переустановке ОС находится на <u>странице</u> <u>продукта</u>.

4 Условия хранения

Модуль вычислителя должен храниться в сухих проветриваемых помещениях при нормальных климатических условиях:

- температура окружающей среды от 15 °C до 35 °C;
- атмосферное давление от 645 до 795 мм рт.ст.;
- относительная влажность воздуха от 45 % до 75 %.

5 Гарантия производителя

ООО «Макро EMC» гарантирует соответствие качества модуля при соблюдении потребителем условий эксплуатации и хранения.

Гарантийный срок – 12 мес.

Срок службы – 36 мес.

ООО «Макро EMC» снимает свои гарантийные обязательства при наличии на изделии механических повреждений деталей модуля (в том числе следы замены, перепайки компонентов).

Приложение А – Список пакетов в сборке образа системы Buildroot

Общее описание пакетов в сборке Buildroot

Установленные библиотеки располагаются в пути /usr/lib/ на файловой системе модуля. Сборка ОС Buildroot собиралась из внутренних и внешних пакетов, представленных в списке.

Внутренние пакеты – пакеты, установленные через Manager Packages.

Внешние пакеты – пакеты, установленные через сторонние ресурсы. В состав внешних пакетов входят:

Пакет opencv_contrib: intensity_transform, line_descriptor, mcc, optflow, ovis, phase_unwrapping, plot, quality, rapid, text, videostab, viz, xfeatures2d, xobjdetect, xphoto.

Пакет nginx: nginx-rtmp-module.

Условные обозначения в списке пакетов:

Жирный шрифт – разделы пакетов;

Символ "→" – переход на уровень ниже.

Таблица А -	Список	пакетов
-------------	--------	---------

Audio and video applications:	videoconvert
alsa-utils	gio
ffmpeg	gio-typefinder
gstreamer 1.x→	playback
enable unit test libraries	audioresample
enable command-line parser	rawparse
enable tracing subsystem	subparse
enable gst-debug trace support	tcp
enable plugin registry	typefind
install tools	videotestsrc
gst1-plugins-base→	videorate
app	videoscale
audioconvert	volume

auidomixer	alsa
audiorate	ogg
theora	jp2kdecimator
vorbis	jpegfromat
gst1-plugins-bayer2rgb-neon	librfb
gst1-plugins-good→	midi
jpeg	mpegdemux
png	mpegtsdemux
avi	mpegtsmux
isomp4	mpegpsmux
law	mxf
matroska	netsim
multifile	onvif
rtp	pcapparse
rtpmanager	pnm
rtsp	proxy
udp	rawparse
videobox	removesilence
videocrop	rist
videofilter	rtmp2
videomixer	rtp
wavenc	rtmp
wavparse	sdp
v412	segmentclip
gst1-plugins-bad \rightarrow	siren
adpcmdec	smooth
aiff	speed
asfmux	subenc
audiobuffersplit	switchbin

audiofxbad	videofilters
audiolatency	videoframe-audiolevel
audiomixmatrix	videoparsers
audiovisuaalizers	videosignal
autoconvert	vmnc
bayer	y4m
debugutils	hls
dvbsubenc	kmssink
dvbsuboverlay	mpeg2enc
dvdspu	musepack
frei0r	neon
gaudieffects	openh264
geometrictransform	webp
gdp	webrtc
id3tag	webrtcdsp
inter	gst1-plugins-ugly \rightarrow
interlace	mpeg2dec
ivtc	mjpegtools
mpv	ubirename
musepack	ubirmvol
v4l2grab	ubirsvol
v4l2loopback	ubiupdatevol
Compressors and decompressors:	ubiblock
bzip2	MTD test tools
Debugging, profiling and	Fonts, cursors, icons, sounds and
benchmark:	themes:
fio	DejaVu fonts→
gdb	mono fonts
ramspeed	sans fonts

	:00.4	
stress-ng	serit fonts	
tinymembench	sans condensed fonts	
Developments tools:	serif condensed fonts	
make	font-awesome	
Filesystem and flash utilities:	Liberation (free fonts) \rightarrow	
dosfstools	mono fonts	
fatlabel	sans fonts	
fsck.fat	serif fonts	
mkfs.fat	Graphic libraries and applications	
e2fsprogs→	(graphic/text):	
debugfs	sdl2	
e2image	$Qt5 \rightarrow$	
e4defrag	qt5base	
fuse2fs	concurrent module	
resize2fs	gui module	
mtd, jffs2 and ubi/ubifs tools	widgets module	
flashcp	linuxfb support (\$ export	
flash_lock	QT_QPA_PLATFROM=linuxfb for	
flash_unlock	activation)	
mkfs.ubifs	DBus module	
mtd_debug	qt5connectivity	
nanddump	qt5enginio	
nandtest	qt5multimedia	
nandwrite	Hardware handling:	
sumtool	Firmware→	
mtdinfog	linux-firmware	
ubiattach	Video firmware→	
ubicrc32	Lontium LT9611UXC HDMI	
ubidetach	transceiver firmware	

ubiformat	WiFi firmware→
ubihealthd	Atheros 10k (QCA9377)
ubimkvol	Qualcomm Atheros 6174
ubinfo	Ethernet firmware→
ubinize	Realterk 8169
dbus	Crypto→
evtest	gnutls
$gpsd \rightarrow$	libgcrypt
NMEA	libgpg-error
hdparm	nettle
hwdata→	openssl support
install pci.ids	Filesystem→
install usb.ids	libfuse
i2c-tools	Graphics→
lm-sensors→	bayer2rgb-neon
sensors	cairo→
memtester	pdf support
parted	png support
pciutils	svg support
smartmontools	fontconfig
u-boot tools \rightarrow	freetype
fw_printenv	harfbuzz
mcom03-utils	jpeg support
usbutils	libdrm→
Interpreter languages and scripting:	Install test programs
nodejs→	libpng
NPM for the target	libsvg
python3	libsvg-cairo
External python modules \rightarrow	opencv4→

django	calib3d
pip	features2d
Libraries:	highgui
Audio/Sound→	gui toolkit (qt5)
alsa-lib→	imgcodecs
aload	imgproc
mixer	ml
pcm	objdetect
rawmidi	python
hwdep	shape
seq	stitching
ucm	videoio
alisp	video
old-symbols	opencv-contrib
libcuefile	gstreamer-1.x
libreplayagain	jpeg support
libvorbis	png support
webrtc-audio-processing	v4l support
Compression and decompression \rightarrow	pixman
lzo	webp
zlib support	Hardware handling→
libaio	boost→
libgpiod→	Layout (system)
install tools	boost-atomic
libiio→	boost-chrono
Local backend	boost-date_time
Install test programs	boost-filesystem
libnfc→	boost-locale
arygon driver	boost-log

pn532_uart driver	boost-regex
pn53x_usb driver	boost-system
build libnfc examples	boost-thread
libqmi	elfutils
libusb	gmp
libusb-compat	gobject-introspection
libv4l	libcap
tslib	libcap-ng
Javascript→	libffi
angularjs→	libglib2
External AngularJS plugins→	liblinear
angular-websocket	libpthread-stubs
vuejs	libtasn1
vuejs-router	Text and terminal handling \rightarrow
JSON/XML→	fmt
expat	libfribidi
tinyxml2	ncurses→
yaml-cpp	ncurses programs
Logging→	newt
spdlog	pcre
Multimedia→	popt
libass	readline
libmpeg2	slang
libogg	Miscellaneous:
libopenh264	collectd→
libtheora	misc plugins \rightarrow
Networking→	logfile
c-ares	syslog
libndp	read plugins \rightarrow

libnice	сри				
libnl	interface				
liboping	memory				
libpcap	ping				
libneon	write plugins \rightarrow				
nghttp2	network				
librtmp	write_log				
Other→	Netwrking applications:				
bluez-utils→	ngx_http_limit_req_module				
build OBEX support	ngx_http_empty_gif_module				
build CLI client	ngx_http_browser_module				
build monitor utility	ngx_http_upstream_ip				
build tools	hash_module				
build audio plugins (a2dp and	ngx_http_upstream				
avrcp)	least_conn_module				
build hid plugin	ngx_http_upstream				
build hog plugin	keepalive_module				
build network plugin	ngx_http_upstream				
can-utils	random_module				
dheped	nmap→				
ethtool→	install ncat				
enable pretty printing	openssh				
ifmetric	client				
iperf4	server				
iproute2	key utilites				
iptables	wget				
lrzsz	wireless tools \rightarrow				
modem-manager→	Install shared library				
QMI support	wpa_supplicant				

network-manager→	Shell and utilites:			
nmtui support	bash			
modem-manager support	System tools:			
nginx→	coreutils			
nginx-rtmp-module	kmod→			
http server→	kmod utilities			
ngx_http_charset_module	systemd→			
ngx_http_gzip_module	enable pstore support			
ngx_http_ssi_module	enable hwdb installation			
ngx_http_userid_module	enable myhostname NSS plugin			
ngx_http_access_module	enable network manager			
ngx_http_auth_basic_module	enable resolve daemon			
ngx_http_autoindex_module	enable timedate daemon			
ngx_http_geo_module	enable timesync daemon			
ngx_http_map_module	enable tmpfiles support			
ngx_http_split_clients_module	enable vconsole tool			
ngx_http_referer_module	util-linux→			
ngx_http_rewrite_module	libblkid			
ngx_http_proxy_module	libfdisk			
ngx_http_fastcgi_module	libmount			
ngx_http_uwsgi_module	libsmartcols			
ngx_http_scgi_module	libuuid			
ngx_http_memcached_module	basic set			
ngx_http_limit_conn_module	agetty			
fsck	uuid			
hwclock	Text editors and viewers:			
mount/umount	nano→			
scheduling utilities	optimize for size			

Приложение Б – Демо приложение SmartCamApp

Приложение SmartCamApp разработано для ознакомительных целей и демонстрирует запуск трансляции по HDMI с модуля электронной камеры с нейросетевой обработкой по распознаванию лица и оружия.

Таблица Б – МЭК и их режимы работы, поддерживаемые приложением SmartCamApp

Модель МЭК	Режимы работы МЭК*
DS-CIMX327-22	0
DS-CIMX335-22	5
DS-CIMX415-22	0
DS-CIMX662-22	0

* - данные режимы поддерживают вывод изображения на экран с разрешением Full HD с максимальным количеством кадров 30 (FPS). Порядковый номер режима работы МЭК взят из утилиты felix-sensor-test.

Запуск приложения SmartCamApp на модуле.

1. Подключите МЭК к модулю используя разъем «MIPI_CSI0» (XS9) через стандартный «прямой» 22-контактный FFC-шлейф (тип A) с шагом контактов 0,5 мм.

2. Выполните последовательно действия пункта 2.3 <u>Подключение</u> модуля.

3. Войдите в среду Linux. Наберите в командной строке логин **root** и нажмите клавишу «Enter».

4. В командной строке среды Linux наберите команду и нажмите клавишу «Enter»:

app rtsp -s <номер подключенного МЭК>

Пример запуска приложения SmartCamApp с МЭК DS-CIMX662-22:

app_rtsp -s 662

В результате запуска приложения начнётся видеотрансляция МЭК с обработкой нейросети. В правом нижнем углу видеотрансляции будет отображаться FPS и разрешение. Чтобы прервать работу приложения SmartCamApp нажмите комбинацию клавиш «Ctrl» + «C».

Лист регистрации изменений

Изм.	Номера листов (страниц)			D	14	Входящий №			
	изме- ненных	замененных	новых	анну- лиро- ванных	Всего листов (страниц) в докум.	№ доку- мента	сопроводительног о документа и дата	Под- пись	Дата